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ABSTRACT 

Seismically-induced soil liquefaction is one the most hazardous geotechnical 

phenomenon that can cause loss of life and devastating damage to infrastructure. Proper 

estimation of critical ground motion parameters (e.g. peak ground acceleration and 

earthquake magnitude) is vital for seismic design of new structures and retrofit of 

existing structures, especially in regions such as the South Carolina Coastal Plain (SCCP) 

where the frequency of re-occurrence of large earthquakes is low (studies of 

paleoliquefaction features have revealed seven, large, prehistoric earthquakes occurring 

within the last 6000 years) and the locations of potential sources are not exactly known. 

Moreover, due to mechanical and chemical mechanisms, phenomena known as “aging”, 

soil resistance to liquefaction increases with time and so the age of soil deposition must 

be considered in liquefaction analysis of aged soil deposits in the SCCP.   

In 2005, a method was developed to estimate the minimum earthquake 

magnitude, M, and peak ground acceleration, amax, of prehistoric earthquakes using in-

situ geotechnical data (e.g. cone penetration and standard penetration data), back-

calculation methods (e.g. the Energy Stress and Cyclic Stress methods) and several 

approaches that account for soil aging by considering density changes in the soil with 

time. Since then, newer semi-empirical approaches have been published based on an 

expanded case history database of liquefaction/no liquefaction sites. Ground Motion 

Prediction Equations (GMPEs) have also been used in combination with back-calculation 

methods to estimate the earthquake magnitudes. Additional studies related to soil age
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 have also been published. Therefore, the purpose of this study is to use these newer 

approaches to further improve the current estimates of M and amax at the four sites of 

Hollywood, Fort Dorchester, Sampit, and Gapway located in the SCCP.  

The first study in this dissertation improved upon the 2005 study by using a newer 

semi-empirical liquefaction analysis method to update the cyclic resistance ratio (CRR) 

and back-calculate the minimum peak ground acceleration at Sampit and Gapway sites. 

The effect of aging on soil resistance was taken into account using the same methodology 

as in 2005. Results show that the newer method for calculating CRR produces lower peak 

ground accelerations than the previously used approach. The difference is most 

significant for lower magnitudes. Calculated average values of age-adjusted magnitude 

range from 5 to 7.5 and the corresponding age-adjusted peak ground acceleration range 

from 0.08 to 0.23g.  

The newer method used in the first study was also used at the Hollywood site, a 

site that had not been previously studied in 2005, and has evidence of four episodes of 

paleoliquefaction. The results are presented in the second study of this dissertation. For 

the Hollywood site, it was shown that when the age of the earthquake was not considered, 

the magnitude ranged from 7 to 7.2 and the corresponding acceleration ranged from 0.23 

to 0.35g. The minimum earthquake magnitude at the time of earthquake was found to be 

lower when accounting for age. As an example, for the most recent prehistoric 

earthquake with the age of 546±17, the minimum back-calculated magnitude ranged from 

5.7 to 6.7 with corresponding acceleration ranging from 0.17 to 0.30g. 

The third study of this dissertation used a newer aging approach that considers the 

influence of age, cementation and stress history on the CRR of the soil to back-calculate 
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the minimum earthquake magnitudes at the Fort Dorchester site. The new aging approach 

provided magnitudes that ranged from 5.1 to 6.2 and were in general agreement with 

previously used methods that considered the effect of aging on only the CPT tip 

resistance values. Also, when the size of the fault was considered, the maximum 

magnitude was found to be 5.6 and the corresponding peak ground acceleration ranged 

from 0.21 to 0.36 g. 

The fourth study of this dissertation presents the results from a statistical analysis 

performed on the available geotechnical data set to find a relation between the updated 

obtained cyclic resistance ratio values. Significant correlation between equivalent clean 

sand tip resistance and the cyclic resistance ratio at the time of earthquake was shown 

using descriptive statistics, summary statistics and regression analysis on the current 

measurements of field test data.  

The fifth study of this dissertation used four proper GMPEs for the east coast of 

the US combined with the Cyclic Stress method to predict the minimum earthquake 

magnitude and peak ground acceleration at the Hollywood, Fort Dorchester, Sampit and 

Gapway sites and find a regional assessment of amax-M in the SCCP. Results were 

compared with previously found values using the Cyclic Stress and Energy Stress 

methods. It was shown that when the source of the earthquake is associated with the 

Charleston Source, the minimum earthquake magnitudes for the prehistoric earthquakes 

that occurred between about 546 to 1021 years ago and between 3548 to 5038 years ago 

were estimated to range from 6.6 to 7.5 and 6.1 to 7.2, respectively. For the earthquakes 

associated with the Sawmill Branch Fault that occurred about 3500 years ago or earlier, 

the minimum earthquake magnitudes were estimated to range from 5 to 6.3. 
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CHAPTER 1 

INTRODUCTION 

Seismically-induced soil liquefaction is one the most hazardous geotechnical 

phenomenon that can cause loss of life and devastating damage to infrastructure. In 1964, 

earthquakes in Nigata, Japan (M=7.5) and Alaska, USA (M=9.2) destroyed numerous 

buildings and structures and initiated studies to understand soil liquefaction. Since then, 

there have been major advances in both understanding and practice with regard to 

assessment and mitigation of hazards associated with seismically induced soil 

liquefaction (Seed and Idriss 1971 and 1982, Robertson and Wride 1998, NCEER 2001, 

etc.). One major outcome from these studies has been the development of empirical 

correlations that are extensively used to determine liquefaction resistance of sand 

deposits from in-situ soil indices (e.g. (N1)60 from the standard penetration test (SPT) and 

(qc)1 from the cone penetration test (CPT)).  

 In regions such as the South Carolina Coastal Plain (SCCP), where the frequency 

of large earthquakes is low and the locations of potential sources are not exactly known, 

the study of liquefaction evidence produced from prehistoric earthquakes plays an 

important role in understanding the regional seismic hazard and estimating critical 

ground motion parameters (e.g. peak ground acceleration and earthquake magnitude) for 

modern seismic design. Such paleoliquefaction studies in the SCCP have revealed more

 than 100 sand blows associated with at least seven, large, prehistoric earthquakes 

occurring within the last 6000 years (Talwani and Schaeffer 2001, Martin and Clough 
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1994, Obermeier et al. 1987, Weems et al. 1986 and Talwani and Cox 1985). The soil 

deposits associated with these sand blows are older than Holocene age (<10,000 years 

old) (Talwani and Cox 1985 and Weems et al. 1986) and studies have shown that the 

cyclic resistance ratio (CRR) of soil increases with time due to mechanical and chemical 

mechanisms (Mitchell and Solymar 1984, Dowding and Hryciw 1986, Skempton 1986 

and Mesri et al. 1990), a phenomenon known as “aging.”  Therefore, using empirical 

correlations that are primarily based on studies of recent earthquakes in California and 

Japan where the soil deposits are of Holocene age to determine liquefaction resistance of 

old sand deposits in the SCCP (>100,000 years old) is not strictly valid.  

Recently, a method was developed by Leon et al. 2005 to consider the effect of 

aging on the cyclic resistance ratio of aged soil deposits in the SCCP. In-situ geotechnical 

data (penetration resistance and shear wave velocity reported by Hu et al. 2002 a,b) from 

two sites (Gapway and Sampit) near Georgetown, South Carolina and two sites near the 

Ten Mile Hill Air Force Base north of Charleston, South Carolina were used to back 

calculate prehistoric minimum earthquake magnitudes and peak ground accelerations 

using Seed’s simplified method (as reported in Youd and Idriss 1997) and time-

dependent approaches of Mesri et al. 1990 and Kulhawy and Mayne 1990. Using this 

methodology, Leon et al. 2006 found that neglecting the effect of aging resulted in a 60% 

underestimation of CRR. 

Since the study of Leon et al. 2005, newer methods for liquefaction analysis with 

consideration to aged soil deposits have been published. For example, Seed’s simplified 

method of liquefaction analysis has been reexamined using additional liquefaction/no 

liquefaction case histories (Moss et al. 2006 and Idriss and Boulanger 2008) and Green et 
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al. 2005 used Ground Motion Prediction Equations (GMPEs) in combination with Cyclic 

Stress methods to back-calculate the earthquake magnitudes of the Vincennes Earthquake 

that occurred around 6100 years B.P. in the Wabash Valley. Furthermore, Hayati and 

Andrus 2009 studied data from over 30 sites in 5 countries and proposed a newer aging 

approach that considers the effect of aging on CRR.  

Therefore, the main goal of this study is to use these newer approaches to find a 

combination of minimum magnitude, M, and peak ground acceleration, amax, for the 

prehistoric earthquakes associated with the aged soil deposits in the SCCP. In-situ 

geotechnical data from the cone penetration test (CPT) and standard penetration test 

(SPT) (including tip resistance, sleeve friction, pore water pressures and blow counts) 

obtained in the vicinity of prehistoric sand blows (see Hu et al. 2002 a,b and Hasek 2016) 

at the SCCP sites of Hollywood (HWD), Fort Dorchester (FD), Sampit (SAM), and 

Gapway (GAP) will be used in this work. The following five research topics are explored 

in this dissertation: 

1.1 RESEARCH TOPIC I – EVALUATION OF NEW METHODS TO CALCULATE 

CRR FOR BACK-ANALYSIS OF PEAK GROUND ACCELERATION  

Due to the significant impact of the liquefaction evaluation methods on 

assessment of the cyclic resistance ratio and factor of safety, using the proper liquefaction 

method has received considerable attention (e.g. Cetin et al. 2004, Moss et al. 2006 and 

Idriss and Boulanger 2008). The first study in this dissertation presents a reassessment of 

the prehistoric earthquake peak ground accelerations at the Sampit and Gapway sites 

using the newer semi-empirical method of liquefaction analysis (to update the CRR) 

proposed by Idriss and Boulanger 2008 with the time-dependent approaches of Mesri et 

al. 1990 and Kulhawy and Mayne 1990 that were used by Leon et al. 2005. The source 
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sand at these sites is estimated to be 450,000 years old (Weems and Lemon 1984). The 

age of sand blows are associated with earthquakes occurring about 546±17 and 1021±30 

years B.P. at Sampit and about 3548±66 and 5038±166 years B.P. at Gapway sites 

(Talwani and Schaeffer 2001). Readers are referred to Chapter 3 of this dissertation for 

more information about this work, which provides an overview of the previously used 

methods for back-analysis of minimum earthquake magnitudes at the Sampit and 

Gapway sites and illustrates how using the newer approach changed the results.   

1.2 RESEARCH TOPIC II –EFFECT OF AGING ON BACK-CALCULATED 

EARTHQUAKE MAGNITUDES AND PEAK GROUND ACCELERATION  

The second study of this dissertation addresses the back-calculation of the 

minimum earthquake magnitude and required acceleration for liquefaction initiation at 

the time of earthquake at the Hollywood site using the newer semi-empirical method of 

liquefaction analysis proposed by Idriss and Boulanger 2008 and the time-dependent 

approaches of Mesri et al. 1990 and Kulhawy and Mayne 1990 that were used by Leon et 

al. 2005. The source sand at the Hollywood site is estimated to be 120,000 to 130,000 

years old (Weems et al. 1986) and the age of the sand blows have been associated with 

earthquakes occurring 546±17 years B.P., 1021±30 years B.P., 3548±66 years B.P. and 

5038±166 years B.P. (Talwani and Schaeffer 2001). Results from the study were 

compared to earlier back-calculations by Martin and Clough 1994 that did not consider 

the effect of aging. Readers are referred to Chapter 4 of this dissertation for more 

information about this work, which provides a review of related studies, research 

contribution, description of aging approaches and the methodologies used to back-

calculate the magnitudes in detail. 
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1.3 RESEARCH TOPIC III – EVALUATION OF NEWER AGING APPROACHES  

FOR BACK-ANALYSIS OF EARTHQUAKE MAGNITUDES 

Minimum earthquake magnitude and peak ground acceleration of prehistoric 

earthquakes at the Fort Dorchester site is investigated using the newer aging approach of 

Hayati and Andrus 2009 with the newer liquefaction analysis methods of Idriss and 

Boulanger 2008 studied in Research Topics 1 and 2. The aging approach of Hayati and 

Andrus 2009 uses an updated liquefaction resistance correction factor (that considers the 

influence of age, cementation and stress history) to find the deposit resistance-corrected 

CRR; whereas, the two aging approaches of Mesri et al. 1990 and Kulhawy and Mayne 

1990 use relations between observed increases in penetration resistance and relative 

density to modify the CPT tip resistance or SPT blow counts for the effect of aging. The 

source sand at the Fort Dorchester site is about 200,000 years old (McCarten et al. 1984; 

Weems and Lemon 1984) and the discovered sand blow is associated with an earthquake 

having a minimum age of 3500 or 6000 years B.P. (Talwani et al. 2011). Readers are 

referred to Chapter 5 of this dissertation for more information about this work, which 

describes the studied site and the aging approaches in detail.  

1.4 RESEARCH TOPIC IV –STATISTICAL ANALYSIS OF POST-EARTHQUAKE 

CYCLIC RESISTANCE RATIOS 

Empirical liquefaction potential assessment correlations are developed based on 

analyzing experimental studies and case studies. Running statistical analyses on the 

smaller liquefaction data sets leads to extend meaningful correlations that can be used as 

a larger data base to predict liquefaction at the sites where complete sets of data are not 

available. The fourth study of this dissertation addresses performing descriptive statistics, 

summary statistics and regression analysis on the current measurements of field test data 
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(CPT tip resistance values) at the SCCP sites of FD, HWD, SAM, GAP and FHS to 

predict the cyclic resistance ratio of the soil at the time of prehistoric earthquakes in the 

South Carolina Coastal Plain. Readers are referred to Chapter 6 of this dissertation for 

more information about this work, which describes the studied sites and the statistical 

analysis in detail.  

1.5 RESEARCH TOPIC V –REGIONAL ASSESSMENT OF aMAX -M FOR THE  

CHARLESTON AREA  

Chapter 7 of this dissertation presents the research aimed to form a regional 

assessment of the amax-M in the Charleston, SC area. The Hayati and Andrus 2009 aging 

approach is applied to the Sampit, Gapway, and Hollywood sites (first studied in 

Chapters 3 and 4 using the aging approaches of Mesri et al. 1990 and Kulhawy and 

Mayne 1990). This is necessary to further investigate the effect of the new aging 

approach on the minimum earthquake magnitudes and accelerations back-calculated 

using the site-specific geotechnical method (Cyclic Stress method) at all four sites.  

Four regionally proper Ground Motion Prediction Equations (GMPEs) for the east 

coast of the US (Toro et al. 1997, Tavakoli and Pezeshk 2005, Atkinson 2008’ and 

Pezeshk et al. 2011) are used to estimate the minimum earthquake magnitude and peak 

ground acceleration at the Hollywood, Fort Dorchester, Sampit, and Gapway sites and 

compare the results with previously found values using the site-specific geotechnical 

method (Cyclic Stress method) and Energy Stress methods. Readers are referred to 

Chapter 7 of this dissertation for more information about this study.   
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1.6 LIST OF PAPERS AND STRUCTURE OF DISSERTATION 

This dissertation includes results that have been published or submitted to peer-

reviewed conferences and journals. One additional paper is in preparation. The five 

completed articles that appear in the dissertation as separate chapters include:  

1. Gheibi, E., and Gassman, S.L. (2014). “Reassessment of prehistoric earthquake 

accelerations at Sampit and Gapway sites in the South Carolina Coastal Plain.” 

Network for Earthquake Engineering Simulation (distributor), Paper, 

DOI:10.4231/D3PV6B73Z 

2. Gheibi, E., and Gassman, S.L. (2015). “Magnitudes of prehistoric earthquakes at 

the Hollywood, South Carolina, Site.” Geotechnical Special Publication, 256: 

1246-1256, DOI: 10.1061/9780784479087.112 

3. Gheibi, E., Gassman, S.L., and Tavakoli, A. (2014). “Using regression model to 

predict cyclic resistance ratio at South Carolina Coastal Plain (SCCP).” Advanced 

Analytics (distributor), Paper, DOI: 10.13140/2.1.4893.4081 

4. Gheibi, E., and Gassman, S.L. (2016). “Application of GMPEs to estimate the 

minimum magnitude and peak ground acceleration of prehistoric earthquakes at 

Hollywood, SC.” Engineering Geology, 214: 60-66. DOI: 

10.1016/j.enggeo.2016.09.016 

5. Gheibi, E., Gassman, S.L., Hasek, M., and Talwani, P. (2017). “Assessment of 

paleoseismic shaking that caused sand blow at Fort Dorchester, SC.” Bulletin of 

Earthquake Engineering, Submitted.  

The format of this dissertation follows a manuscript style and the remaining 

chapters are organized as follows: Chapter 2 provides a brief overview of geotechnical 

javascript:void(0);
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in-situ testing, liquefaction potential assessment methods, paleoearthquake evaluation 

methods and time dependent mechanisms (“aging”). Chapters 3, 4, 5, 6 and 7 include the 

five original research papers mentioned above. Finally, conclusions are presented in 

Chapter 8. 
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

This chapter presents the necessary background information related to the data 

and methods used in this study. First, an overview of the paleoliquefaction studies in the 

South Carolina Coastal Plain (SCCP) is provided. A brief explanation of the procedures 

used to analyse the previously collected Cone Penetration Test (CPT) and Standard 

Penetration Test (SPT) data in the SCCP sites is also presented. Time dependent 

mechanisms that are associated with aging phenomenon are explained and methods that 

consider the effect of time dependent mechanism on soil strength are discussed. The 

liquefaction analysis methods that were used to evaluate the liquefaction potential at the 

SCCP sites are described in addition to the methods to back-analyse the earthquake 

magnitude and peak ground acceleration of the prehistoric earthquakes including 

Magnitude Bound method, Energy Stress method and Ground Motion Prediction 

Equations (GMPEs). 

2.1 SUMMARY OF PALEOLIQUEFACTION STUDIES IN THE SCCP 

Cox 1984 discovered a sand blow at Warrens Crossroads located at 40 km west of 

Charleston, South Carolina. Following his findings, Obermeier et al. 1987 conducted 

series of research to discover the extent of paleoliquefaction features associated with the 

prehistoric earthquakes in the soils of SCCP and the areas which experienced 

paleoliquefaction. More studies have been performed during the past thirty years to 

determine the location and age of sand blows in the SCCP. Talwani et al. 1999 and
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 Talwani and Schaeffer 2001 discussed the discovery of more than fifty sand blows 

associated with earthquakes that date back as far as 6,000 years. Figure 2.1 indicates 

location of paleoliquefaction features discovered in the South Carolina Coastal Plain area.  

 

 
 

Figure 2.1 Locations of paleoliquefaction features in the South 

Carolina Coastal Plain (adapted from Hu et al. 2002a). 

 

Hu et al. 2002a used geotechnical data (CPT, SPT, Vs, and soil index properties) 

to evaluate the liquefaction potential at three sites of Sampit (SAM), Gapway (GAP) and 

Ten Mile Hill (TMHA and TMHB) located in the SCCP. Leon et al. 2005 and 2006 

assessed liquefaction potential at the time of earthquake at these sites using a time-

dependent approach and two methods of Mesri et al. 1990 and Kulhawy and Mayne 1990 

to account for the age of soil.  
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The focus of this research is to estimate a proper combination of amax-M for the 

prehistoric earthquakes that liquefied soils at five sites of Hollywood (HWD), Fort 

Dorchester (FD), Sampit (SAM), Gapway (GAP) and Four Hole Swamp (FHS) in the 

SCCP. Back-calculation is performed using geotechnical data (CPT, SPT and soil index 

properties), time-dependent approaches that consider the effect of aging on increase in 

soil resistance against liquefaction, liquefaction analysis methods (site-specific method) 

and Ground Motion Prediction Equations. Readers are referred to Chapter 3 for more 

detailed information regarding the description of the Sampit and Gapway sites and 

Chapter 4 and 5 for the Hollywood and Fort Dorchester sites, respectively.   

2.2 GEOTECHNICAL FIELD TESTS 

2.2.1 Cone Penetration Test (CPT) 

Cone penetration test is a method used to delineate soil stratigraphy and determine 

geotechnical properties of soil such as: cone penetration tip resistance, qc, sleeve friction, 

fs, pore water pressure, u2. The test consists of hydraulically penetration of an electric 

piezocone into the soil at a constant rate of 2cm/sec (ASTM D5778-12 (2012)). The test 

provides continues record of penetration resistance along the soil profile. CPT 

measurements are used to determine soil type using Figure 2.2, Equations 2.1, 2.2 and 

2.3. 

 

𝑄 = (
𝑞𝑐 − 𝜎𝑣𝑐
𝑃𝑎

)(
𝑃𝑎
𝜎𝑣𝑐′
)𝑛 (2.1) 

 

where Q is stress normalized cone penetration resistance, σvc is the total vertical stress, 

σ’
vc is the effective vertical stress, Pa is the atmospheric pressure, and the exponent n 
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varies from 0.5 in sands to 1 in clays (Robertson and Wride 1998). Normalized friction 

ratio, F, and normalized cone pore pressure ratio, Bq, are is determined as follows: 

 

𝐹 = (
𝑓𝑠

𝑞𝑐 − 𝜎𝑣𝑐
) . 100% (2.2) 

𝐵𝑞 = (
𝑢2 − 𝑢0
𝑞𝑐 − 𝜎𝑣𝑐

) (2.3) 

 

where u0 is hydrostatic pore pressure. Soil behavior type index, Ic, is used to correlate 

fines content and liquefaction resistance of soil as presented by Robertson and Wride 

1998 in Equation 2.4.  

 

𝐼𝐶 = [(3.47 − log⁡(𝑄))
2 + (log(𝐹) + 1.22)2]0.5 (2.4) 

 

Robertson 2009 pointed out the influence of soil sensitivity and overconsolidation 

ratio on the parameters F and Q respectively (shown in Figure 2.2) and updated the 

approach to determine value of n as in Equation 2.5:  

 

𝑛 = 0.381⁡(𝐼𝐶) + 0.05 (
𝜎𝑣𝑐
′

𝑃𝑎
) − 0.15⁡⁡⁡⁡⁡⁡⁡⁡𝑤ℎ𝑒𝑟𝑒⁡𝑛 ≤ 1 (2.5) 

 

Robertson 1990 suggested using normalized CPT soil Behavior type chart shown 

in Figure 2.2 to determine soil type. Zone 5, 6 and 7 are potential zones for soil 

liquefaction according to Robertson and Wride 1998. Soil in zone 5, 6 and 7 in Figure 2.2 

is mostly consists of sand mixtures with little fines. Robertson and Wride 1998 criteria 
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for soil liquefaction is F<1% and (qc1N)cs<160. They also defined the boundaries in 

Figure 2.2 using Ic values as follows; clays (Ic>2.95), silts (2.05≤Ic≤2.95) and sands 

(Ic<2.05). In general Robertson and Wride 1998 criteria for soil liquefaction is Ic≤2.6 and 

Bq ≤0.5 but considering the concerns proposed by Youd et al. 2001 and Hayati and 

Andrus 2008, soils with Ic<2.4 and Bq<0.4 are susceptible to liquefaction and soils fall in 

the range of Ic>2.6 and Bq>0.5 are considered as the nonliquefiable soils. Soils between 

these criteria are considered as moderately liquefiable and additional testing is required to 

define the liquefaction susceptibility.  

 

 
 

Figure 2.2 Normalized CPT soil behavior type chart (adapted from 

Robertson 1990). 
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2.2.2 Standard Penetration Test (SPT) 

Standard penetration test is a widely used method to determine soil strength and 

compactness. A 140-pound hammer connected to drill rods and a split spoon sampler 

falls freely and repeatedly through a distance of 760 mm (30in) to drive a standard split 

spoon into the ground for 150 mm (6in) (ASTM D1586-11 (2011)). Number of blow 

counts for sampler penetration at each interval (6in) is recorded. Sum of the blow count 

numbers for second and third intervals is reported as the “Standard Penetration 

Resistance” or the N value. Soil samples collected from split spoon sampler are disturbed 

due to the penetration method but are proper for the index geotechnical testing. SPT is 

widely used throughout the world because of its simplicity and economic efficiency. The 

important advantage of using SPT is collection of soil samples but the test provides non-

continues data in depth of soil profile which is an important disadvantage. It is shown that 

temperature has significant effect on dynamic properties of the material (Gheibi et al. 

2016) and soil strength parameters also may vary by the change in soil temperature 

(Moradi et al. 2015, 2016, Baser et al. 2016, McCartney et al. 2015) or environmental 

effects that cause electro consolidation in soil deposits (Malekzadeh and Sivakugan 2016, 

Saeedi et al. 2012). Moreover, blow count numbers are significantly affected by 

parameters such as hammer type, blow rate, overburden pressure, drill length and type of 

anvil. Depending upon type of equipment and operation environment 10-70% of the 

energy (the 140-Ib hammer drops from 30in height) transferred to the drill rod stem by 

each impact is lost by the frictional and mechanical resistances. Seed et al. 1984 

considered N60 as the standard for SPT as:  
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𝑁60 = 𝑁𝑚
𝐸𝑅𝑚
60

 (2.6) 

 

where Nm is the measured blow count, ERm is the measured delivered energy ratio as a 

percentage, ERm/60 is the energy ratio and N60 is the blow count for an energy ratio of 

60%. In addition to the energy ratio correction, CE (ERm/60), Youd et al. 2001 

recommended applying correction factor for borehole, CB, correction factor for rod 

length, CR, and correction factor for sampler, CS, to the N60 in Equation 2.7.  

 

𝑁60 = 𝐶𝐸𝐶𝐵𝐶𝑅𝐶𝑆𝑁𝑚 (2.7) 

 

CR accounts for the effect of rod length on the energy transferred to the sampling rods. 

Youd et al. 2001 recommended range of 0.75 for rods shorter than 3m to CR=1 for rod 

lengths of 10m for liquefaction analysis. CB and CS factors will be unnecessary if 

appropriate standard borings are used. Sampler in the SPT might strike a large particle in 

the depth of soil which leads to the change in soil strength parameters (Khabiri et al. 

2016) and cause a jump in the number of blow counts in the corresponding depth, 

whereas a uniform increase in the blow counts indicates the soil condition.  

2.3 LIQUEFACTION ANALYSIS METHODS 

Soil liquefaction analysis can be conducted using 1) stress-based, 2) strain-based, 

and 3) energy-based methods (Gheibi and Bagheripour 2010, Gheibi and Bagheripour 

2011, and Gheibi et al. 2011). Stress-based method is the most commonly used method 

and is conducted using two approaches; 1) methods based on the laboratory test results on 

the undisturbed soil samples and 2) methods based on the empirical correlations using the 
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field test results such as SPT, CPT and shear wave velocity (VS). Laboratory methods are 

not common for research purposes because of the problems associated with undisturbed 

sample preparation accuracy, cost and difficulty (Cetin et al. 2004). Seed and Idriss 1971 

initiated the simplified method to evaluate liquefaction potential by the means of factor of 

safety against liquefaction. Cyclic stress ratio, CSR, and cyclic resistance ratio, CRR, in 

saturated soil are compared during the earthquake to determine the factor of safety. 

Please note that dynamic behavior of saturated clay and unsaturated sands are different 

during the earthquake (Ghavami et al. 2016, Khosravi et al. 2016, and Shooshpasha et al. 

2011). The Seed and Idriss 1971 simplified method has been modified and extensively 

used in the past few decades (i.e. Youd and Idriss 1997, Idriss 1999). Brief description of 

the three recent CPT based liquefaction analysis methods in the literature (including key 

equations and assumptions) are summarized in the following sections.  

2.3.1 CPT Based Liquefaction Analysis Methods 

2.3.1.1 Robertson and Wride 1998 

The Seed and Idriss 1971 simplified method was used to determine the CSR: 

 

𝐶𝑆𝑅 =
𝜏𝑎𝑣𝑒
𝜎𝑣𝑐′

= 0.65 (
𝑎𝑚𝑎𝑥
𝑔
) (
𝜎𝑣𝑐
𝜎𝑣𝑐′
) 𝑟𝑑⁡ (2.8) 

 

where amax is the maximum ground acceleration at surface, σvc is the vertical stress and 

σ’
vc  is the vertical effective stress at depth z. rd is the reduction factor that considers the 

flexibility of soil column based on the recommendations of Seed and Idriss 1971 and 

Liao and Withman 1986.  
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𝑟𝑑 = 1 − 0.00765 ∗ 𝑍⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑍 ≤ 9.15𝑚⁡ (2.9) 

𝑟𝑑 = 1.174 − 0.0267 ∗ 𝑍⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡9.15 < 𝑍 ≤ 23𝑚⁡⁡⁡⁡⁡⁡ (2.10) 

 

Robertson and Wride 1998 defined the CRR for the 7.5 Richter earthquake 

magnitudes using equivalent clean sand value of tip resistance ((qC1N)CS) and following 

equations: 

 

𝐶𝑅𝑅7.5 = 93 [
(𝑞𝐶1𝑁)𝐶𝑆
1000

]

3

+ 0.08⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡50 ≤ (𝑞𝐶1𝑁)𝐶𝑆 < 160⁡ (2.11) 

𝐶𝑅𝑅7.5 = 0.833 [
(𝑞𝐶1𝑁)𝐶𝑆
1000

]

3

+ 0.05⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑞𝐶1𝑁)𝐶𝑆 < 50⁡⁡⁡⁡⁡⁡ (2.12) 

(𝑞𝐶1𝑁)𝑐𝑠 = 𝐾𝐶𝑞𝐶1𝑁⁡⁡⁡ (2.13) 

𝑞𝐶1𝑁 =
𝑞𝑐1
𝑝𝑎2

=⁡(
𝑞𝑐
𝑝𝑎2
) 𝐶𝑄⁡ (2.14) 

𝐶𝑄 = (𝑃𝑎 𝜎𝑣𝑐
′⁄ )𝑛⁡ (2.15) 

 

where Pa is 100 kPa and CQ is the correction parameter for overburden pressure with the 

maximum value of 2. Stress normalized cone penetration resistance (Q), normalized 

friction ratio (F) and soil behavior type index (Ic) in Equations 2.1, 2.2 and 2.4 were used 

to determine n and Kc (correction factor for the effect of grain characteristics). The 

parameter n in Equation 2.15 is considered to be one and 0.5 for clay type soils and sandy 

soils, respectively. Iterative procedure is used to define n with the first estimation of n=1 

in Equation 2.1 and applying the obtained Q values in Equation 2.4. qc1N will be equal to 

Q if the calculated Ic is greater than 2.6 but if the Ic is less than 2.6 then n is assumed to 

be 0.5 in Equation 2.1. If the recalculated Ic remains less than 2.6 then n=0.5 will be used 
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in Equation 2.15 else, n=0.75 is used in both equations 2.15 and 2.1. Kc is also function 

of soil behavior index (Ic) and is calculated using the following procedure: 

  

𝐾𝐶 = 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐼𝑐 < 1.64 (2.16) 

𝐾𝐶 = 0.403𝐼𝑐
4 + 5.581𝐼𝑐

3 − 21.63𝐼𝑐
2 + 33.75𝐼𝐶 − 17.88⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐼𝑐 > 1.64⁡⁡⁡⁡⁡⁡ (2.17) 

𝐾𝐶 = 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡1.64 < 𝐼𝑐 < 2.36⁡⁡𝑎𝑛𝑑⁡𝐹 < 0.5%⁡⁡⁡⁡⁡⁡ (2.18) 

𝐼𝑐 ≥ 2.64⁡⁡𝐿𝑖𝑘𝑒𝑙𝑦⁡𝑛𝑜𝑛⁡𝑙𝑖𝑞𝑢𝑒𝑓𝑖𝑎𝑏𝑙𝑒⁡𝑖𝑓⁡𝐹 > 1% (2.19) 

 

2.3.1.2 Moss et al. 2006 

Moss et al. 2006 analyzed the CPT results from liquefied and non-liquefied cases 

to develop deterministic and probabilistic approach of soil liquefaction evaluation. 

Following sections address their equations to define the CSR and CRR for both 

deterministic and probabilistic approaches. CPT tip resistance, qc, and sleeve friction, fs, 

were normalized using the following equations:  

 

𝑞𝑐,1 = 𝐶𝑞 . 𝑞𝐶 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑎𝑛𝑑⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑓𝑠,1 = 𝐶𝑓 . 𝑓𝑠 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (2.20) 

𝐶𝑞 = (
𝑃𝑎
𝜎𝑣′
)𝑐⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑎𝑛𝑑⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐶𝑓 = (

𝑃𝑎
𝜎𝑣′
)𝑆⁡⁡⁡⁡⁡⁡ (2.21) 

𝐶 = 𝑓1. (
𝑅𝑓

𝑓3
)𝑓2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑎𝑛𝑑⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑅𝑓 =

𝑓𝑠
𝑞𝑐
∗ 100%⁡⁡⁡⁡⁡⁡ (2.22) 

𝑓1 = 𝑥1. 𝑞𝑐
𝑥2 ⁡,⁡⁡⁡⁡⁡𝑓2 = −(𝑦1. 𝑞𝑐

𝑦2 + 𝑦3),⁡⁡⁡⁡⁡𝑓3 = 𝑎𝑏𝑠(log(10 + 𝑞𝑐))
𝑧1 (2.23) 

  

where x1=0.78, x2=-0.33, y1=-0.32, y2=-0.35, y3=0.49 and z1=1.21. Moss et al. 2006, 

defined the reduction factor, rd, as a function of earthquake magnitude, Mw, and peak 

ground acceleration, amax, using Equations 2.24 and 2.25.  
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𝑟𝑑 =
[1 +

−9.147 − 4.173. 𝑎𝑚𝑎𝑥 + 0.652.𝑀𝑤
10.567 + 0.089𝑒0.089(−𝑑.3.28−7.760.𝑎𝑚𝑎𝑥+78.576)

]

[1 +
−9.147 − 4.173. 𝑎𝑚𝑎𝑥 + 0.652.𝑀𝑤

10.567 + 0.089𝑒0.089(−7.760.𝑎𝑚𝑎𝑥+78.576)
]

⁡⁡⁡⁡𝑑 < 20𝑚⁡⁡ (2.24) 

𝑟𝑑 =

[
1 +

−9.147 − 4.173. 𝑎𝑚𝑎𝑥 + 0.652.𝑀𝑤
10.567 + 0.089𝑒0.089(−𝑑.3.28−7.760.𝑎𝑚𝑎𝑥+78.567)

]

[
1 +

−9.147 − 4.173. 𝑎𝑚𝑎𝑥 + 0.652.𝑀𝑤
10.567 + 0.089𝑒0.089(−7.760.𝑎𝑚𝑎𝑥+78.567)

]

− 0.0014. (𝑑. 3.28 − 65)⁡𝑑 > 20𝑚 (2.25) 

 

Finally, the cyclic resistance ratio, CRR, was calculated using Equation 2.26 and 

2.27. For the deterministic approach, Moss et al. 2006 recommended the liquefaction 

probability of 15%, PL=15%, based on the prior thresholds of CPT and SPT-based 

analyses.  

 

𝑃𝐿 = 𝜑

(

 
 
−

(
𝑞𝑐,1
1.045 + 𝑞𝑐,1(0.110𝑅𝑓) + (0.001𝑅𝑓) + 𝑐(1 + .850𝑅𝑓) −

7.177. ln(𝐶𝑆𝑅) − 0.848. ln(𝑀𝑤) − 0.002. ln(𝜎𝑣
, ) − 20.923

)

1.632

)

 
 
⁡ (2.26) 

𝐶𝑅𝑅 = 𝑒𝑥𝑝

(

 
 
(
𝑞𝑐,1
1.045 + 𝑞𝑐,1(0.110𝑅𝑓) + (0.001𝑅𝑓) + 𝑐(1 + .850𝑅𝑓) −

0.848. ln(𝑀𝑤) − 0.002. ln(𝜎𝑣
, ) − 20.923 + 1.632. 𝜑(𝑃𝐿)

−1 )

7.177

)

 
 

 (2.27) 

 

2.3.1.3 Idriss and Boulanger 2008 

Idriss and Boulanger 2008 used additional liquefaction/no liquefaction case 

histories and reexamined the original procedures and proposed revised relations for the 

parameters involved in calculating CSR and CRR. For the study herein, their procedure 

was used to back-calculate the minimum earthquake magnitude and peak ground 
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acceleration at the sites with paleoliquefaction features; Sampit, Gapway, Hollywood, 

Fort Dorchester and Four Hole Swamp. Following sections provide updated equations to 

calculate CSR and CRR based on the CPT results. Reduction factor, rd, was determined 

using the Idriss 1999 approach for the depths less than 20m. For the depths more than 

20m the site response analysis was recommended by Idriss and Boulanger 2008. 

 

𝑟𝑑 = exp(𝛼(𝑧) + 𝛽(𝑧)𝑀) ⁡⁡⁡⁡⁡⁡⁡𝑍 < 20𝑚⁡⁡ (2.28) 

𝛼(𝑧) = −1.012 − 1.126 sin (
𝑧

11.73
+ 5.133) ⁡,⁡⁡⁡𝛽(𝑧) = 0.106 + 0.118 𝑠𝑖𝑛 (

𝑧

11.28
+ 5.142)⁡ (2.29) 

 

CPT tip resistance increase with depth and so qc values were normalized using 

Equations 2.30 and 2.31 to obtain a dimensionless value of penetration resistance in sand 

to an equivalent effective stress of one atmosphere.   

 

𝑞𝑐1 = 𝐶𝑁𝑞𝑐⁡,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑞𝑐1𝑁 =
𝑞𝑐1
𝑃𝑎
⁡⁡⁡⁡⁡⁡⁡⁡ (2.30) 

𝐶𝑁 = (
𝑃𝑎
𝜎𝑣𝑐′
)
1.338−0.249.(𝑞𝑐1𝑁)

0.264

⁡⁡≤ 1.7⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡21 < 𝑞𝑐1𝑁 ⁡< 254⁡ (2.31) 

 

Cyclic stress ratio for the earthquake magnitude of 7.5 and at depth where 

effective vertical stress is equal to 1 atm was obtained using the simplified procedure for 

liquefaction potential evaluation and Equation 2.32 to 2.35.  

 

𝐶𝑆𝑅𝑀=7.5,𝜎𝑣𝑐′ =1 = 𝐶𝑆𝑅𝑀,𝜎𝑣𝑐′ ∗
1

𝑀𝑆𝐹
∗
1

𝐾𝜎
= 0.65 ∗ 𝑟𝑑 ∗ (

𝜎𝑣0 ∗ 𝑎𝑚𝑎𝑥
𝜎𝑣0
′ ∗ 𝑔

) ∗
1

𝑀𝑆𝐹
∗
1

𝐾𝜎
 (2.32) 
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𝑀𝑆𝐹 = 6.9⁡ exp (
−𝑀

4
) − 0.058 ≤ 1.8 

(2.33) 

𝐾𝜎 = 1 − 𝐶𝜎 ln (
𝜎𝑣𝑐
′

𝑃𝑎
) ≤ 1.1⁡⁡⁡ 

(2.34) 

𝐶𝜎 =
1

37.3 − 8.27(𝑞𝐶1𝑁)0.264
≤ 0.3,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑞𝐶1𝑁 ⁡≤ 211⁡ 

(2.35) 

 

Note that following the procedure used in Idriss and Boulanger 2008, (qc1N)cs was 

used in Equations 2.31 and 2.35. Cyclic resistance ratio was also calculated using 

Equation 2.36.  

 

𝐶𝑅𝑅𝑀=7.5,𝜎𝑣𝑐
, =1 = 𝑒𝑥𝑝 {

(𝑞𝑐1𝑁)𝑐𝑠
540

+ (
(𝑞𝑐1𝑁)𝑐𝑠
67

)
2

− (
(𝑞𝑐1𝑁)𝑐𝑠
80

)
3

+ (
(𝑞𝑐1𝑁)𝑐𝑠
114

)
4

− 3} (2.36) 

 

where (qc1N)cs is the equivalent clean-sand value of the tip resistance and is obtained 

using Equation 2.37 and 2.38.  

 

(qc1N)cs = qc1N + ∆qc1N (2.37) 

∆qc1N = (5.4 +
qC1N
16

) ∗ exp {1.63 +
9.7

FC + 0.01
− (

15.7

FC + 0.01
)
2

} 
(2.38) 

Finally, Factor of safety against liquefaction was obtained as the ratio of CRR to 

CSR.  

 

FSliq =
CRRM,σvc′

CSRM,σvc′
⁡⁡⁡𝑜𝑟⁡⁡⁡⁡⁡𝐹𝑆𝑙𝑖𝑞 =

𝐶𝑅𝑅𝑀=7.5,𝜎𝑣𝑐′ =1

𝐶𝑆𝑅𝑀=7.5,𝜎𝑣𝑐′ =1
⁡⁡ (2.39) 
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2.4 PALEOEARTHQUAKE EVALUATION METHODS 

The main goal in paleoearthquake analysis is to back-calculate the minimum 

earthquake magnitude, M, and peak ground acceleration, amax, required for liquefaction 

initiation. Paleoliquefaction features are used in the regions such as South Carolina that 

encounter infrequent earthquakes and the exact locations of the prehistoric earthquake 

faults are not known, to determine the amax and M. Recently, Obermeier et al. 2001, 

Olson et al. 2005, Green et al. 2005 and Leon et al. 2005 have conducted paleoearthquake 

studies in the SCCP sites.  

Obermeier et al. 2001 reviewed most of the methods used for back-analysis of the 

earthquake magnitudes. They concluded selection of the appropriate method depends on 

the data available at the liquefaction sites. Olson et al. 2005 studied different approaches 

and corresponding uncertainties for back-analysis of earthquake magnitudes. They 

summarized the existing methods into two main categories; 1) Cyclic Stress method and 

2) Magnitude Bound method. Uncertainties for Cyclic Stress method include; validity of 

in-situ testing techniques, factors related to liquefaction susceptibilities, factors related to 

seismicity, factors related to field observations and ground failure mechanisms. The 

Magnitude Bound method is also limited by the need for calibration from historic 

earthquakes in the same tectonic settings.  

Following the study of Olson et al. 2005, Green et al. 2005 used Ground Motion 

Prediction Equations in combination with the Cyclic Stress method (considering the 

uncertainties discussed by Olson et al. 2005) to back-calculate the earthquake magnitude 

of the prehistoric Vincennes Earthquake that occurred around 6100 years B.P. in the 

Wabash Valley. Leon et al. 2005 also used Magnitude Bound and Energy-Stress methods 
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to back-calculate the prehistoric earthquake magnitudes and used Seed’s Cyclic Stress 

method, Ishihara method and the Martin and Clough method to back-calculate the peak 

ground acceleration at the SCCP. The following sections provide information about the 

paleoearthquake magnitude evaluation method that was used in Leon et al. 2005 and the 

Ground Motion Prediction Equations, as used by Green et al. 2005. 

2.4.1 Paleoearthquake Magnitude Evaluation 

Magnitudes of prehistoric earthquakes are estimated based on the 

paleoliquefaction evidences. Because of the uncertainties associated with 

paleoearthquake back-analysis methods, finding magnitudes using different methods 

increase the confidence in interpretation of the results. Following the approaches used in 

Leon et al. 2005, two methods are discussed in this section for back-analysis of 

earthquake magnitude; 1) Magnitude Bound method and 2) Energy-Stress method 

2.4.1.1 Magnitude Bound Method 

The Magnitude Bound method correlate the earthquake magnitude, M, to the 

distance from tectonic source to farthest liquefied site as discussed by Ambraseys 1988. 

Figure 2.3 indicate the world wide data of many historical earthquakes. To estimate range 

of farthest distance of liquefaction, origins of the data from various tectonic plates were 

analysed. Ambraseys 1988 also used Equation 2.40 to correlate earthquake magnitude 

and the maximum epicentral distance, Re (cm), at which liquefaction had been observed.  

 

M = −0.31 + 2.65 ∗ 10−8𝑅𝑒 + 0.99(𝑙𝑜𝑔𝑅𝑒)⁡⁡ (2.40) 

 

The method was used herein because it was used in previous studies by Talwani 

and Schaeffer 2001 and Leon et al. 2005 for similar sites in the SCCP; however, it is 
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important to note that it was developed based on active shallow crustal settings dissimilar 

to the eastern U.S. and is a method independent of age and the in-situ soil properties.  

 

 
 

Figure 2.3 Relation between epicentral distance and 

earthquake magnitude. (adapted from Pond and Martin, 1997) 
 

2.4.1.2 Energy-Stress Method 

The earthquake magnitude in the Energy-Stress method is described in terms of 

energy center location and strength properties, (N1)60. Pond 1996 defined the seismic 

intensity, T, as a function of hypocentral distance, R (km), and earthquake magnitude, M 

as in Equation 2.41:  

 

T = 101.5𝑀 𝑅2⁄ ⁡⁡ (2.41) 

 

Pond and Martin 1997, used the data from liquefied and non-liquefied sites to find 

the boundary for liquefied sites as a function of seismic intensity and penetration 

resistance, (N1)60, as shown in Figure 2.4. The boundary between the two areas is 

formulated as:  
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(𝑁1)60 = (
𝑇

1.445
)0.165⁡⁡ (2.42) 

 

Hu et al. 2002b, combined Equations 2.41 and 2.42 and derived Equation 2.43 to 

define earthquake magnitude as a function of hypocentral distance, R, and corrected blow 

count numbers, (N1)60.  

 

 
 

Figure 2.4 Relation between blow count number and seismic 

energy intensity function. (after Pond and Martin, 1997) 

 

𝑀 =
2

3
log⁡[1.445𝑅2(𝑁1)60

6.06]⁡ (2.43) 

 

The post-earthquake number of blow counts, (N1)60 (post), at the Sampit and 

Gapway sites in Chapter 3, Hollywood Site in Chapter 4 and Fort Dorchester Site in 

Chapter 5 were used in Equation 2.43 to Back-calculate the earthquake magnitudes. 
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2.4.2 Ground Motion Prediction Equation 

Risk assessment plays a significant role in designing important structures. GMPEs 

are used to estimate the ground motion parameters required for risk assessment such as 

peak ground acceleration (PGA) and pseudo-spectral acceleration (PSA). Selecting the 

appropriate GMPE leads to a more robust risk assessment and increases the safety factors 

in design purposes. Similar to the site-specific geotechnical method (Cyclic Stress 

method), GMPE defines amax as a function of earthquake magnitude (M) and site-to-

source distance (R). As there are many combinations sufficient to induce liquefaction, the 

results of both methods are combined by the intersection of the results to provide a 

reasonable combination of amax-M. This concept is shown in Figure 2.5. The solid line is 

the range of possible amax-M combinations for liquefaction initiation obtained using the 

site-specific geotechnical method and the dashed line represents the amax-M combinations 

for liquefaction initiation found using GMPE. The intersection point is the minimum 

potential amax-M combination to initiate liquefaction.     

Green et al. 2005 used four Ground Motion Prediction Equation, namely 

Somerville et al. 2001, Atkinson and Boore 1995, Toro et al. 1997, and Campbell 2001, 

2003 in combination with the Cyclic Stress method to back-calculate the earthquake 

magnitude of the prehistoric Vincennes Earthquake that occurred around 6100 years B.P. 

in the Wabash Valley. Many paleoliquefaction sites have been discovered in the Wabash 

Valley as shown in Figure 2.6. They concluded that the liquefaction features were 

associated with the prehistoric Vincennes Earthquake which was determined to have 

magnitude of about 7.5. 
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Figure 2.5 Combination of GMPE and liquefaction evaluation 

methods for a hypothetical site (adapted from Green et al. 2005) 

 

 
 

Figure 2.6 Paleoliquefaction sites in the Wabash Valley 

(adapted from Green et al. 2005) 

   

Figure 2.7 presents the regional assessment of paleoseismic strength of shaking of 

the Vincennes Earthquake using four used GMPEs. As shown, acceleration values at each 

site were obtained as a function of site-to-source distance. 
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Green et al. 2013 also studied the application of GMPEs to evaluate the 

accuracies of back-calculation methods for the modern 2010-2011 Canterbury (New 

Zealand) earthquake sequence. They used five GMPEs, namely McVerry et al. 2006, 

Boore and Atkinson 2008, Chiou and Youngs 2008, Ambrahamson and Silva 2008, and 

Bradley 2010 models and figured out back-analysis methods determine the seismic 

parameters accurately if the earthquake source location and mechanism are known; the 

earthquake magnitude was estimated to be 7.1 and 6.3 for the Darfield 2010 and 

Christchurch 2011 earthquakes respectively. 

 

 
 

Figure 2.7 Regional assessment of Vincennes earthquake strength using (a) 

Somerville et al. 2001, (b) Atkinson and Boore 1995, (c) Toro et al. 1997, 

and (d) Campbell 2001, 2003 GMPEs. (adapted from Green et al. 2005) 

 

The U.S. Geological Survey (USGS) (Petersen et al. 2014) updated hazard map 

report includes nine updated regionally proper ground motion models for the central and 

eastern United States. A brief introduction to four of these models will be discussed 
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below.  Two of these are new models that were not in the previous 2008 USGS report: 

Pezeshk et al. 2011 and Atkinson 2008’. The Toro et al. 1997 and Tavakoli and Pezeshk 

2005 models have similar site classification to the SCCP sites based on the National 

Earthquake Hazards Reduction Program (NEHRP) site classification.   

Toro et al. 1997 used stochastic ground motion models and derived four sets of 

attenuation equations for the central and eastern part of the North America. They updated 

previous studies using more ground motion data, more realistic modeling of crustal 

effects and more quantitative process to derive the median predictions. They noted that 

their model may overestimate ground motion parameters at sites near the rupture of a 

large earthquake. This limitation is not significant for most sites in the central and eastern 

United States because the distances from the earthquakes are usually more than one or 

two source dimensions. Wave propagation and fracture prediction mechanism can be 

developed using the recent studies of Salimi-Majd et al. 2016 and Regueiro et al. 2014 

that proposed a failure criterion to predict failures for different type of materials. Figure 

2.8 shows the comparison of this model with two attenuation equations of AB87 and 

Atkinson and Boore 1995 (AB95). The Toro et al. 1997 model was developed for the 

earthquake magnitudes in the range of 5 to 8 and the closest distance to the rupture (Rjb) 

up to 500km. As shown in Figure 2.8, for a given distance, peak ground acceleration is 

defined as a function of earthquake magnitude which typically forms a relation like the 

dashed line in Figure 2.5 used in back-calculation analysis.  

Figure 2.9 also presents the comparison of predicted accelerations as a function of 

earthquake magnitudes and rupture distances for three models of P11, TP05 and A08’. 
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Figure 2.8 Comparison of ground motion 

predictions (adapted from Toro et al. 1997) 

 

The lower and upper curves for each model are the earthquake magnitudes of 5 

and 7 respectively. Similar to the Toro et al. 1997 model, the relation between earthquake 

magnitude and peak ground acceleration at a given distance for each model will be 

similar to the dashed line in Figure 2.5.  

 

 
 

Figure 2.9 Comparison of ground motion 

predictions (adapted from Pezeshk et al. 2011) 
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Tavakoli and Pezeshk 2005 used a Hybrid-empirical model to predict the ground 

motion relationships for eastern North America (ENA) using ground motion parameters 

from western North America (WNA). They revised the Campbell 2003 attenuation model 

using a Hybrid-empirical model and changed the magnitude-dependent stress drop in the 

WNA and ENA regions which have different seismological parameters. They used 

empirical attenuation models in a host region (WNA) and hybrid models to transform 

attenuation relationship to a target region (ENA). They considered effects of focal depth 

and stress drop on ground motion. Furthermore, they developed an empirical model to 

obtain ground motions at different distances; they used a single corner-frequency source 

model for the far-field ground motions and a double corner-frequency source model for 

the short distances. The proposed attenuation relationship is valid for earthquake 

magnitudes from 5 to 8.2 and closest distance to the fault rupture (Rrup) less than 1000km.  

Atkinson 2008 defined GMPE for a particular measure of horizontal-component 

ground motions as a function of earthquake mechanism, distance from source to site, 

local average shear-wave velocity and fault type. Equations were developed to obtain 

ground acceleration, peak ground velocity (PGV) and 5%-damped pseudo-absolute 

acceleration spectra. He performed regression analysis on the Pacific Earthquake 

Engineering Research Center (PEER) NGA strong motion database. Atkinson and Boore 

2011 developed an adjustment factor to be multiplied by the Boore and Atkinson 2008 

GMPE (applicable for WNA) to obtain A08’ GMPE applicable for ENA. The adjustment 

factors were obtained using the ENA data directly. The A08’ GMPE is similar to the 

hybrid empirical approaches and provides a reliable model with a wide range of 

magnitudes (4 to 8) and closest distance to the rupture (Rjb) (1 to 500 km).  
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Pezeshk et al. 2011 used empirical Hybrid method and five GMPEs for the 

western North America generated by Pacific Earthquake Engineering Research Center to 

derive an updated approach for the eastern North America. In the Hybrid empirical 

method, adjustment factors between the WNA and ENA reflect the regional differences 

in source, path and site. Pezeshk et al. 2011 mapped ground motion models from the 

WNA onto the ENA based on the seismological regional properties. They developed an 

alternative GMPE applicable for earthquake magnitudes from 5 to 8 and distances to the 

fault rapture (Rrup) less than 1000 km. Their model was compatible with other GMPEs 

developed for the earthquakes in ENA.  

The four discussed GMPEs will be used in combination with the site-specific 

geotechnical method and age-adjusted values of Cyclic Resistance Ratio (CRR) in 

Chapter 7 to find the minimum earthquake magnitude and peak ground acceleration of 

the prehistoric earthquakes at the Hollywood, Fort Dorchester, Sampit and Gapway sites 

2.5 TIME-DEPENDENT (AGING) PHENOMENON 

Effect of time on increase in soil penetration resistance in SPT and CPT have 

been studied following the use of ground modification methods by Mitchell 1986, 

Schmertmann 1987 and Mesri et al. 1990. Penetration resistance in SPT and CPT 

increases with time (Mitchell and Solymar 1984, and Skempton 1986). More studies are 

required to evaluate the effect of aging on elastic behavior of soils using the similar 

studies by Moahmmadi and Shahabi 2015 and 2012 that developed a constitutive to 

simulate soil behaviors. Aging mechanism in sands and discussion of aging methods are 

described in the following sections: 
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2.5.1 Aging Mechanism in Sands 

Mechanical and chemical mechanisms are known as two major mechanisms that 

cause aging in sands. Macro-interlocking of sand particles, micro-interlocking of surface 

roughness and internal stress arching during secondary consolidation are three major 

reasons for mechanical mechanisms. Moreover, chemical mechanism consists of 

dissolution and precipitation of silica. Youd and Hoose 1977, discovered cementing and 

compaction in sand deposits as a reason for increase in resistance against liquefaction. 

Shahsavari and Sivathayalan 2014, Shahsavari et al. 2014, and Shahsavari and Grabinsky 

2014 also studied the effect of post liquefaction and overconsolidation on liquefaction 

susceptibility of the Fraser River. Mitchell and Solymar 1984, and Mitchell 1986, 

explained formation of silica acid gel on particle surfaces and cementing bonds at 

interparticle contacts as the chemical mechanism in sands over periods that cause 

increase in strength of sands due to aging.  

For dry sands, Joshi et al. 1995 and Mesri et al. 1990, correlated the increase in 

penetration resistance to the macro-interlocking of the particles and micro-interlocking of 

surface roughness due to external loads during the secondary compression. Schmertmann 

1991, described increase in effective stresses including grain slippage, dispersive particle 

movements and internal stress arching as the phenomenon that cause aging in sand and 

clay particles. Moreover, Arango and Migues 1966, concluded that the high resistance in 

aged soils is attributed to the particle interlocking.  

Michalowski and Nadukuru 2015, studied microscopic characterization of the 

sand grains using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy 
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to explain the gradual increase in the soil strength with time. Figure 2.10 indicates the 

surface roughness of Ottawa sand in different scales. 

 

 
 

Figure 2.10 SEM images of Ottawa sand grain surface: (a) image width 160 μm, 

(b) 100 μm, and (c) 10 μm. (after Michalowski and Nadukuru 2015) 

 

As shown in Figure 2.10, roughness of texture is independent of scale. They 

concluded that contact in grains with surface morphology (shown in Figure 2.10) causes 

intense fracturing in the initial stages of loading until stopping the applied load. They 

referred the time dependent process of interaction as contact fatigue and observed the 

increase in soil resistance after several days while the interlocking forces increase with 

time. The technique developed by Salamat-Taleb et al. 2013 can also be used to perform 

lower length scale analysis to estimate size-dependent behavior of soils particles. 

2.5.2 Methods to Account for Aging 

Several investigations have revealed that liquefaction resistance of sands 

increases with time. Youd and Hoose 1977 were among the first researchers who 

analysed the liquefaction reports and noticed the liquefaction probability is higher in 

sediments deposited within the past few hundred years compare to the Holocene 

(<10,000 yrs) sediments. Seed et al. 1975 and Seed 1979, addressed the time period under 

sustained load or age of the deposit as one of the factors that significantly affect the 
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liquefaction potential of sands. Seed 1979 concluded that the samples subjected to longer 

periods of loading have more resistance against liquefaction. Based on his findings, 

cyclic strength resistance of undisturbed samples obtained from an old fill are 50 to 100 

times greater than the freshly deposited samples. Mitchell and Solymar 1984, also 

detected the increase in stiffness and strength of soil against penetration up to 100 percent 

more than the initial penetration resistance value. Skempton 1986, observed reflection of 

the aging effect in higher blow count over several months. In this study, Mesri et al. 

1990, Kulhawy and Mayne 1990, and Hayati and Andrus 2009 approaches were used to 

account for the effect of aging on penetration tip resistance and blow count numbers.  

2.5.2.1 Mesri et al. 1990 

The Mesri et al., 1990 relation is based on an observed increase in penetration 

resistance after ground densification by blasting, vibrocompaction and dynamic 

compaction in clean sands and is a function of time, t, the change in relative density, 

ΔDR, and the ratio of the secondary compression index to the compression index, Cα/Cc, 

in Equation 2.44.  Mesri et al. 1990, concluded that continues rearrangement of the sand 

particles in the secondary compression step leads to the decrease in the relative density 

which causes increase in penetration resistance.  

 
qc
(𝑞𝑐)R

= (
𝑡

𝑡𝑅
)𝐶𝐷.𝐶𝑎/𝐶𝑐 (2.44) 

 

where (qc)R and tR are the cone penetration resistance and time at the end of primary 

consolidation. qc is the cone penetration resistance at any time t>tR, CD is the empirical 

parameter related to the soil densification obtained using Figure 2.11.  
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Figure 2.11 Variation in CD due to the post-liquefaction 

densification, ΔeR, (after Mesri et al., 1990). 
 

To account for the changes in post-earthquake soil consolidation, Ellis and De 

Alba 1999 and Stark et al. 2002 estimated the change in relative density, ΔDR, to be 

between 5% and 10%.  

2.5.2.2 Kulhawy and Mayne 1990 

The Kulhawy and Mayne 1990 method is based on collected SPT blow count, 

(N1)60, and relative density data, DR, as a function of soil particle size, D50 for the 

normally consolidated sands as shown in Figure 2.12.a and Equation 2.45 

  

(𝑁1)60

𝐷𝑅
2 = 60 + 25𝑙𝑜𝑔𝐷50 (2.45) 

 

They also developed their study on aged fine to medium overconsolidated sands 

from four geologic periods and proposed a correction factor, CA, to describe the influence 

of aging (t) on the (N1)60/Dr2 ratio.  
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 C𝐴 = 1.2 + 0.05log⁡(
𝑡

100
) (2.46) 

 

Leon et al. 2005, applied the coefficient CA to the CPT penetration data and 

described the following equation to correlate the current penetration resistance to the 

post-earthquake values of penetration resistance, qc1 (post), and (N1)60 (post).  

 

(𝑁1)60
(𝑁1)60⁡(𝑝𝑜𝑠𝑡)

=
qc1

qc1⁡(post)
= 𝐶𝐴 (2.47) 

 

 
 

Figure 2.12 (a) Effect of particle size on blow counts in sands. (b) effect of aging 

on blow counts, (after Kulhawy and Mayne 1990) 
 

2.5.2.3 Hayati and Andrus 2009 

Hayati and Andrus 2009 analysed the laboratory and field data from more than 30 

sites to update factors used in liquefaction analysis of aged soils. They performed 

regression analysis to evaluate effect of aging, cementation and stress history on CRR 

and liquefaction analysis. The methodology of Hayati and Andrus 2009 uses updated 

liquefaction resistance correction factor, KDR, given in Equation 2.48, where t is the time 
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since initial deposition or critical disturbance in years, to find CRRk (the deposit 

resistance-corrected CRR) from Equation 2.49.  

  

KDR = 0.13. log(t) + 0.83 (2.48) 

CRRK = CRR. KDR (2.49) 

 

Results of cyclic tests on laboratory samples suggest an increase of 0.12 per log 

cycle of time which is in a good agreement with the factor 0.13 in Equation 2.48 obtained 

from combining analysis of the laboratory and field tests. As shown in Figure 2.13, 

coefficient of determination, r2, for Equation 2.48 is 0.62. Hayati and Andrus 2009, also 

updated the reference age to 23 years (when KDR=1) as it was assumed to be 10 years in 

Hayati et al. 2008.  

 

 
 

Figure 2.13, Deposit resistance factor, KDR, as a 

function of time. (after Hayati and Andrus 2009) 

 

2.6 SUMMARY 

This chapter presented a summary of paleoliquefaction studies in the SCCP. 

Geotechnical in-situ testing procedures including CPT and SPT were discussed. 
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Liquefaction analysis methods developed based on the CPT results including Robertson 

and Wride 1998, Moss et al. 2006, and Idriss and Boulanger 2008 were summarized. The 

earthquake magnitudes of the prehistoric earthquakes in the South Carolina Coastal Plain 

were not recorded at time of earthquake and so paleoseismic evaluation methods and 

aging phenomenon were introduced to consider the effect of increase in soil resistance in 

back-analysis of the prehistoric earthquake magnitude and peak ground acceleration. The 

Magnitude Bound method, Energy Stress method and Ground Motion Prediction 

Equations were discussed as the approaches used in this study to back-calculate the 

minimum earthquake magnitude and peak ground acceleration. The Mesri et al. 1990, 

Kulhawy and Mayne 1990, and Hayati and Andrus 2009, approaches were used in this 

study to consider the effect of aging and readers are referred to Chapter 3 for more 

detailed information regarding the description of Sampit and Gapway sites and Chapter 4, 

and 5 for Hollywood, Fort Dorchester sites respectively. 
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CHAPTER 3 

 

REASSESSMENT OF PREHISTORIC EARTHQUAKE ACCELERATIONS AT SAMPIT 

AND GAPWAY SITES IN THE SOUTH CAROLINA COASTAL PLAIN
1 

 

                                                           
1 Gheibi, E., and Gassman, S. L. (2014). Network for Earthquake Engineering Simulation (distributer), 

Paper, DOI: 10.4231/D3PV6B73Z. Reprinted here with permission of publisher. 
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ABSTRACT 

Current empirical procedures to evaluate soil liquefaction susceptibility are applicable for 

relatively young Holocene soil deposits (<10,000 years) and do not consider the increase 

in cyclic resistance ratio over time. Particle rearrangement, interlocking and cementation 

are aging phenomenon that can cause increase in liquefaction resistance. For this study, 

in situ geotechnical data (cone penetration tests with pore pressure measurements and 

laboratory index tests) in the vicinity of prehistoric sand blows at Sampit and Gapway 

sites in the South Carolina Coastal Plain were used to reassess the back analysis of 

prehistoric earthquake magnitudes and maximum ground accelerations using newer, 

semi-empirical approaches than were used in previous analyses. The geotechnical data 

were used with paleoliquefaction evaluation methods that consider the effect of soil age 

and disturbance to estimate the magnitude and maximum ground acceleration needed for 

liquefaction at the time of the prehistoric earthquakes. Results show that the newer 

method for calculating acceleration produces lower peak ground accelerations than the 

previously used approach. The difference is most significant for lower magnitudes. 

Calculated average values of age-adjusted magnitude range from 5 to 7.5 Richter and 

age-adjusted peak ground acceleration for this variation of M range from 0.08 to 0.23g. 

3.1 INTRODUCTION 

Paleoliquefaction analysis plays an important role in studying the paleoseismicity 

in regions such as the South Carolina Coastal Plain (SCCP) where the frequency of re-

occurrence of earthquakes is low and the locations of potential sources are not exactly 

known. Studies of paleoliquefaction features (e.g. sand blows) found in the SCCP over 

the past two decades have revealed at least seven, large, prehistoric earthquakes occurring 
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within the last 6000 years with an average occurrence rate, based on the three most recent 

events, of about 500 years (Talwani and Schaeffer 2001). Hu et al. 2002a,b used site-

specific geotechnical data (penetration resistance and shear wave velocity) in the vicinity 

of these paleoliquefaction features to back-calculate the magnitude and peak ground 

accelerations of the prehistoric earthquakes needed for liquefaction to occur. The back-

calculations were based on empirical correlations using Seed’s Simplified Method (Seed 

and Idriss 1971) as reported in Youd and Idriss 1997, that are extensively used to 

determine liquefaction resistance of sand deposits from in-situ soil indices (e.g. (N1)60 

from the standard penetration test (SPT) and (qc)1 from the cone penetration test (CPT)). 

However, these correlations are primarily based on studies of recent earthquakes in 

Japan, China and the west coast region of the U.S. where the soil deposits are of 

Holocene age (<10,000 years old). Because the sand deposits encountered in the SCCP 

are older than 100,000 years, Leon et al. 2005, developed a method to account for the 

effect of time-dependent mechanisms (“aging”) on the back-calculated magnitudes and 

peak ground accelerations and obtained an approximately 0.9 unit reduction in magnitude 

and 15% reduction in peak ground acceleration. Neglecting the effect of aging resulted in 

a 60% underestimation of CRR (Leon et al. 2006). To obtain peak ground surface 

acceleration, both Hu et al. 2002b, and Leon et al. 2005, used the empirical correlations 

from Seed’s Simplified method (Seed and Idriss 1971, and Youd and Idriss 1997).  

However, since the time Seed’s original method was put forth, in-situ index 

testing has been improved, the analysis framework has been refined, and additional 

liquefaction/no liquefaction case histories have been added to the database. This led 

Idriss and Boulanger 2008, to reexamine the original procedures and propose revised 



www.manaraa.com

43 

relations for the stress reduction factor (rd), earthquake magnitude scaling factor for 

cyclic stress ratios (MSF), overburden correction factor for cyclic stress ratios (𝐾𝜎), and 

the overburden normalization factor for penetration resistances (CN). Therefore, for the 

study herein, the back-calculated magnitudes and peak ground accelerations of the 

prehistoric earthquakes at the Sampit and Gapway sites are reassessed using the newer 

semi-empirical approach of Idriss and Boulanger 2008, and the time-dependent approach 

of Leon et al. 2005, to obtain the accelerations.   

3.2 SITES INVESTIGATED 

In-situ testing was performed at the Sampit and Gapway sites between 1997 and 

2010. The Sampit site is located about 4.8 km west-northwest of Georgetown, SC and is 

approximately 9 km southwest of the Gapway (GAP) site. Both sites are on the eastern 

flank of a mid-Pleistocene-age beach ridge and overlapping Holocene swamp deposits.  

At the Sampit site, sand blows were found at three locations (SAM-02, SAM-04 

and SAM-05) and were associated with earthquake episodes that occurred about 546, 

1021 and 1648 years ago respectively (Talwani and Schaeffer 2001). Hu et al. 2002a, 

reported the results for the in-situ tests (seismic cone penetration tests (SCPT) and 

standard penetration tests (SPT)) performed at six locations (SAM-01 to SAM-06). Three 

additional SCPT tests (which are used in this research to back calculate the peak ground 

acceleration) were performed in 2010. SAM-SCPT-1 is in the vicinity of the sand blow at 

SAM-04. In general, the soil profile at Sampit consists of 2.0 m of silty sand underlain by 

5.0 m of sand, 2.7 m of clay, and silt beginning at a depth of 10 m below the ground 

surface. As shown in Figure 3.1, the source sand layer is located between about 2.0 to 7.0 

m and has a thickness that varies across the site from 4.65 to 6.15 m. The soil within this 
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layer has been classified as poorly graded sand (SP) (Hu et al. 2002a and Williamson 

2013).  

At the Gapway site, sand blows were found at three locations (GAP-02, GAP-03, 

and GAP-04). GAP-02 and GAP-03 were associated with earthquakes that occurred 3548 

and 5038 years ago (Talwani and Schaeffer 2001), respectively. The sand blow 

discovered at GAP-04 is assumed to be associated with the same earthquake as the 

nearby sand blow found at GAP-03 (Leon et al. 2005). Hu et al. 2002a reported the 

results for the in-situ tests performed at five locations (GAP-01 to GAP-05). Three 

additional SCPT tests were performed in 2010. GAP-SCPT-1 is in the vicinity of the sand 

blow at GAP-04. GAP-SCPT-2 and GAP-SCPT-3 are in the vicinity of the sand blows at 

GAP-03 and GAP-02, respectively. In general, the soil profile at Gapway consists of 1 m 

of sand that overlies 0.3 m of clay, 1 m of sand, 2.4 m of clay, and sand below a depth of 

4.6 m. As shown in Figure 1, the source sand layer is found between 1.2 to 2.1 m depth 

and varies in thickness from 0.72 to 1.75 m across the site. The source sand has been 

classified as poorly graded sand with 5 to 7% fines (SP-SM or -SC). The source sand is 

estimated to be 450,000 years old at both sites (Weems and Lemon 1984). 

3.3 METHODS 

3.3.1 Accounting for Soil Aging and Disturbance 

The methodology of Leon et al. 2005, was used to correct the cone penetration tip 

resistance, 𝑞𝑐1, for 1) aging of the soil and 2) disturbance due to post-liquefaction 

consolidation (primary) and densification (or loosening). The method is based on the idea 

that the empirical correlations for liquefaction evaluation applicable for young or freshly 

deposited soils can be used for the older soil deposits as long as the parameters involved 
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(SPT, CPT, Vs, and CRR) are modified appropriately to account for the effect of aging. 

By correcting the in situ currently recorded in situ geotechnical data for aging, the 

corresponding data immediately after the earthquake (for the sites that liquefied) or 

deposition (for the sites that did not liquefy) are determined and termed “post-

earthquake”. These data are further corrected for disturbance from the earthquake to 

obtain the “pre-earthquake” data. 

 

 
 

Figure 3.1 CPT profiles at the Sampit and Gapway sites. 

  

Leon et al.’s method accounts for disturbance due to the liquefaction event and 

post-liquefaction aging using two different approaches. Approach 1 is based on the 
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relations offered by Mesri et al. 1990, for both the age and disturbance correction and 

Approach 2 is based on work by Kulhawy and Mayne 1990, for the age correction and 

Seed et al. 1988, for the disturbance correction. Change in relative density (∆𝐷𝑅) is 

considered to be 5% and 10% between the pre-(qc1 (pre)) and post-(qc1 (post)) earthquake 

state. Following Leon et al. 2005 for the CPT locations in vicinity of discovered sand 

blows, the age of earthquake is used when correcting for age to obtain qc1 (post);whereas, 

for CPT locations where sand blows were not discovered, the age of soil deposit is used. 

The average qc1 (pre) and qc1 (post) values of tip resistance found using this method and the 

six most recent CPT profiles at Sampit and Gapway are summarized in Table 3.1. The 

results show that the age and disturbance-corrected values of tip resistance are less than 

current measurements, thus showing the increase in soil resistance with time. 

 

Table 3.1 Average values of current, post- and pre- earthquake tip resistance data for 

source sand layer corrected for aging and disturbance. 

 

Location  
Age 

(years)† 

qc1(current) 

(MPa)  

Average qc1 (post) (MPa)  Average qc1(pre) (MPa)  

Approach 1 Approach 2 Approach 1 Approach 2 

ΔDR 

5% 

ΔDR 

10% 

ΔDR 

5% 

ΔDR 

10% 

ΔDR 

5% 

ΔDR 

10% 

ΔDR 

5% 

ΔDR 

10% 

SAM-CPT-1 1,021 10 3 3 8 8 6 4 8 7 

SAM-CPT-2 450,000 9 2 1 7 7 2 1 7 7 

SAM-CPT-3 450,000 13 2 1 9 9 2 1 9 9 

GAP-CPT-1 5,038  7 2 2 6 6 4 2 5 5 

GAP-CPT-2 5,038 8 2 2 6 6 4 3 6 6 

GAP-CPT-3 3,548 4 1 1 3 3 2 1 3 3 
†Age of earthquake from Talwani and Schaeffer 2001. 

 

 3.3.2 Back-Calculation of the Earthquake Magnitude 

The earthquake magnitude has been back-calculated by using the “Magnitude 

Bound” method and by using the “Energy-Stress” method for sites in the SCCP (Hu et al. 
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2002b and Leon et al. 2005). The Magnitude Bound method relates the earthquake 

magnitude, M, to the epicentral distance (Re) as discussed by Ambraseys 1988:  

 

M = −0.31 + 2.65 ∗ 10−8𝑅𝑒 + 0.99(𝑙𝑜𝑔𝑅𝑒)⁡⁡ (3.1) 

 

Hu et al. 2002b, derived a relationship using the Energy-Stress method based on 

the work of Pond and Martin 1997. This is a relationship between the seismic intensity at 

the site in terms of magnitude, M, in Richter, hypocentral distance, Rh, in km, and 

liquefaction susceptibility represented by (N1)60:  

 

𝑀 =
2

3
log⁡[1.445𝑅2(𝑁1)60

6.06]⁡ (3.2) 

 

This relationship is assumed to be applicable for world-wide tectonic conditions, 

but Obermeier and Pond 1999, recognized that the magnitude could be constrained 

further knowing localized information such as stress drop, focal depth, the degree of 

liquefaction susceptibility on the extent of liquefaction, and the attenuation of bedrock 

shaking. 

Magnitudes back-calculated from previous studies are summarized in Table 3.2. 

The results from the “Magnitude Bound” method indicate a magnitude of 7.0 to 7.2 

(assuming a source near Charleston (Re=100 to 140 Km)) or 6.3 to 6.8 (assuming a 

source northeast of Charleston (Re= 10 to 35 Km)) as found by Talwani and Schaeffer 

2001, and Hu et al. 2002b. The results from the “Energy Stress” method range from 5.5 

to 7.0 (northeast source) and 6.8 to 7.8 (Charleston source) when soil age was not taken 
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into account and from 4.3 to 6.4 (northeast source) and 5.5 to 7.2 (Charleston source) 

when soil age was taken into account (Leon et al. 2005). Given the range of values from 

these two methods, the peak ground acceleration for different magnitudes at each site was 

subsequently obtained for M=5, 6, 7.5 Richter. 

 

Table 3.2 Estimated magnitudes of prehistoric earthquake episodes in SCCP. 

 

 Earthquake Magnitude 

 E
p

is
o

d
e
 

Age†, 

Years 

B.P.  

Source 
Associated 

Sand blow 

Re or R 

(Km) 

Talwani & Schaeffe,2001 
Hu et al. 

2002b 

Leon et al. 

2005 
Empirical 

Magnitude 

Bound 

A 546±17 Charleston SAM-02 100-140 7+ 7.0 7.4 to 7.6 6.2 to 7.0 

B 1021±30 Charleston SAM-04 100-140 7+ 7.0 7.4 to 7.6 6.2 to 6.8 

C 1648±74 Northeast SAM-05 10-35 ~6 6.3 to 6.8 6.3 to 7.0 5.1 to 6.4 

C' 1683±70 Charleston SAM-05 100-140 7+ 7.2 7.6 to 7.8 6.4 to 7.2 

D 1996±212 South … … ~6 5.7 … … 

E 3548±66 Charleston GAP-02 100-140 7+~6 7.0 6.8 to 7.0 5.6 to 6.4 

F 5038±166 Northeast GAP-03 10-35 ~6 … 5.5 to 6.2 4.3 to 5.6 

F' 5038±166 Charleston GAP-03 100-140 7+ … 6.8 to 7.0 5.5 to 6.2 
†Age of earthquake from Talwani and Schaeffer, 2001. 

 

3.3.3 Evaluation of Peak Ground Acceleration 

Idriss and Boulanger 2008, defined the cyclic resistance ratio for a given 

earthquake (CRRM,σ’VC) with the following equation:  

 

𝐶𝑆𝑅𝑀,𝜎𝑣𝑐′ = 𝐶𝑅𝑅𝑀=7.5,𝜎𝑣𝑐′ =1 ∗ 𝑀𝑆𝐹 ∗ 𝐾𝜎 = ⁡0.65 ∗ 𝑟𝑑 ∗ (
𝜎𝑣0 ∗ 𝑎𝑚𝑎𝑥
𝜎𝑣0
′ ∗ 𝑔

)⁡⁡ (3.3) 

 

where amax is the maximum ground acceleration at surface, 𝜎𝑣0  is the vertical stress and 

𝜎𝑣0
′   the vertical effective stress at depth z, and rd is the reduction factor that considers the 
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flexibility of soil column. A coefficient of 0.65 is applied to consider the significant 

cycles during the earthquake. The magnitude scaling factor (MSF) is used to consider the 

earthquakes with the magnitudes other than 7.5. 𝐾𝜎 is the overburden correction factor 

which has effect on SPT blow counts (N1)60, and normalized cone penetrometer 

resistance (qc1N)cs for calculation of CRR. The revised relations of MSF, rd, 𝐾𝜎 and CN 

proposed by Idriss and Boulanger 2008, were used in this study. 

Idriss and Boulanger 2008, also re-evaluated the CPT-based liquefaction 

correlation using an expanded case history database of liquefaction/no liquefaction sites 

and adjusted the relation to reflect the number of equivalent cycles that had occurred up 

to the time when liquefaction was triggered for cases where liquefaction occurs early in 

shaking. The CPT-based approach was also modified to account for the effects of non-

plastic fines content on the liquefaction resistance. The relation between CRR and (qc1N)cs 

is given by: 

 

𝐶𝑅𝑅𝑀=7.5,𝜎𝑣𝑐
, =1 = 𝑒𝑥𝑝 {

(𝑞𝑐1𝑁)𝑐𝑠
540

+ (
(𝑞𝑐1𝑁)𝑐𝑠
67

)
2

− (
(𝑞𝑐1𝑁)𝑐𝑠
80

)
3

+ (
(𝑞𝑐1𝑁)𝑐𝑠
114

)
4

− 3}⁡ (3.4) 

 

where (𝑞𝑐1𝑁)𝑐𝑠 is the equivalent clean-sand value of the corrected tip resistance and can 

be computed as follows:  

 

(𝑞𝑐1𝑁)𝑐𝑠 = 𝑞𝑐1𝑁 + ∆𝑞𝑐1𝑁⁡ (3.5) 

∆𝑞𝑐1𝑁 = (5.4 +
𝑞𝐶1𝑁
16

) ∗ 𝑒𝑥𝑝 {1.63 +
9.7

𝐹𝐶 + 0.01
− (

15.7

𝐹𝐶 + 0.01
)
2

}⁡⁡⁡ (3.6) 
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where FC is the fines content percentage and 𝑞𝑐1𝑁 is the normalized value of 𝑞𝑐1 by Pa 

(𝑞𝑐1𝑁=𝑞𝑐1/Pa) to obtain a dimensionless value of penetration resistances in sand to an 

equivalent 𝜎𝑣0
′  of one atmosphere (Pa=1.06 tsf=101 kPa). 𝑞𝑐1 is the corrected value of tip 

penetration resistance for overburden pressure and is defined using Equation 3.7 and 3.8.  

 

𝑞𝑐1 = 𝑞𝑐 ∗ 𝐶𝑁⁡ (3.7) 

𝐶𝑁 = (
𝑃𝑎
𝜎𝑣0
′ )

𝛽 ≤ 1.7⁡, 𝛽 = 1.338 − 0.249(𝑞𝐶1𝑁)
0.264⁡,⁡⁡⁡⁡21 ≤ 𝑞𝐶1𝑁 ≤ 254⁡ (3.8) 

 

An iterative procedure is needed to determine the 𝐶𝑁 and 𝑞𝑐1 because as it is 

indicated in these equations, 𝐶𝑁 depends on 𝑞𝑐1 and 𝑞𝑐1 depends on 𝐶𝑁. In this research 

100 times of iteration is done to achieve qc1N. To calculate 𝐶𝑆𝑅𝑀,𝜎𝑣𝑐′ , MSF and 𝐾𝜎 

parameters are applied to 𝐶𝑅𝑅𝑀=7.5,𝜎𝑣𝑐
, =1. The overburden correction factor, 𝐾𝜎, is 

achieved using the following equation:  

 

𝐾𝜎 = 1 − 𝐶𝜎 ln (
𝜎𝑣0
′

𝑃𝑎
) ≤ 1.1;⁡⁡𝐶𝜎 =

1

37.3 − 8.27(𝑞𝐶1𝑁)
0.264

≤ 0.3,⁡⁡⁡𝑞𝐶1𝑁 ≤ 211⁡ (3.9) 

 

For reference, Leon et al. 2005, found CRR using the following relations where, 

(qc1N)cs was found from Youd and Idriss 1977:  

 

𝐶𝑅𝑅7.5 = 0.05 + 0.833[⁡(𝑞𝑐1𝑁)𝑐𝑠 1000⁄ ]⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐼𝑓⁡(𝑞𝑐1𝑁)𝑐𝑠 < 50⁡ (3.10) 

𝐶𝑅𝑅7.5 = 0.08 + 93[⁡(𝑞𝑐1𝑁)𝑐𝑠 1000⁄ ]3⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐼𝑓⁡50 ≤ (𝑞𝑐1𝑁)𝑐𝑠 < 160⁡ (3.11) 
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The (qc1N)cs values that correspond to the qc1(pre) values from Table 3.1 were found 

from Idriss and Boulanger 2008, and compared to those from previous studies using Leon 

et al. 2005, are shown in Table 3.3. The differences in (qc1N)cs found from Idriss and 

Boulanger 2008 and Leon et al. 2005, range from 0 to 59 (average of 15). 

 

Table 3.3 Average values of (qc1N)cs (pre) corresponding to qc1(pre) from Table 3.1. 

 

Location 
Age 

(years) 

qc1(current) 

(MPa) 

Average (qc1N)cs (pre) 

Approach 1 Approach 2 

ΔDR 5% ΔDR 10% ΔDR 5% ΔDR 10% 

[8] [5] [8] [5] [8] [5] [8] [5] 

SAM-CPT-1 1,021  10 62 74 38 46 75 89 73 87 

SAM-CPT-2 450,000 9 16 20 10 12 64 79 64 79 

SAM-CPT-3 450,000 13 23 24 15 15 92 94 92 94 

GAP-CPT-1 5,038  7 38 54 23 32 53 74 52 72 

GAP-CPT-2 5,038  8 42 85 25 50 59 118 58 116 

GAP-CPT-3 3,548 4 25 33 15 20 33 44 32 43 

 

3.4 RESULTS 

Using the age-corrected values of (qc1N)cs from Table 3.3, the calculated values of 

CRRM=7.5, representing those at the time of the earthquake for SAM-CPT-1, and GAP-

CPT-1, -2, and -3 (or deposition for SAM-CPT-2,-3) using the newer relations of Idriss 

and Boulanger 2008, in Equation 3.4 are compared with those found using Equation 3.10 

and 3.11, used in previous studies (Leon et al. 2005), in Table 3.4.  

The maximum ground acceleration, amax, found using Equation 3.3 and the CRR 

values in Table 3.4 are summarized for earthquake magnitudes M=5, M=6 and M=7.5 in 

Table 3.5. 
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Table 3.4 Comparison of CRRM=7.5 found from two methods. 

 

Location No. 
Age 

(years) 

CRRM=7.5⁡ 
(Average of Approach 1 and 2) 

 

ΔDR =5% ΔDR =10% 

Eqn 10 Eqn 4 Eqn 10 Eqn 4 

SAM-CPT-1 1,021 0.14 0.10 0.12 0.09 

SAM-CPT-2 450,000 0.10 0.07 0.10 0.07 

SAM-CPT-3 450,000 0.13 0.10 0.13 0.10 

GAP-CPT-1 5,038 0.12 0.08 0.11 0.07 

GAP-CPT-2 5,038  0.13 0.09 0.12 0.08 

GAP-CPT-3 3,548 0.09 0.06 0.08 0.06 

 

The accelerations found using the previous method are shown for comparison. For 

a stronger earthquake in magnitude, less acceleration is needed for the soil to be 

liquefied. Using the Idriss and Boulanger 2008, procedure for the Sampit site, the peak 

ground accelerations range from 0.15 to 0.23g for M=5 and 0.08 to 0.12 g for M=7.5 

while the previous method leads to a range from 0.30 to 0.46g and 0.10 to 0.16g for M=5 

and M=7.5, respectively. The Youd and Idriss 1997, method which is used in the Leon’s 

2005, work results in higher values of acceleration which is not conservative particularly 

for lower earthquake magnitudes. Using the newer method reduces the acceleration 

values about 50% for M=5 and 23% for M=7.5. For the Gapway site, the calculated 

accelerations range from 0.15 to 0.20g for M=5 and 0.08 to 0.11g for M=7.5 and range 

from 0.29 to 0.43g for M=5 and 0.10 to 0.15g when M=7.5. For the cases when relative 

density changes more during the earthquake (ΔDR=10%) less acceleration is needed for 

soil to be liquefied due to higher amount of disturbance.  

Finally, the site-specific estimated magnitudes for the prehistoric earthquakes (see 

Table 3.2) at the locations of the sand blows near the CPT locations in this study were 
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used to back-calculate the minimum peak ground accelerations that could cause sand 

blows for these prehistoric earthquakes. 

 

Table 3.5 Peak ground acceleration for source sand layer. 

 

Location 

Maximum Acceleration (g) 

M=5 M=6 M=7.5 

ΔDR  5% ΔDR  10% ΔDR  5% ΔDR  10% ΔDR  5% ΔDR  10% 

[8] [5] [8] [5] [8] [5] [8] [5] [8] [5] [8] [5] 

SAM-CPT-1 0.23 0.46 0.20 0.39 0.18 0.29 0.16 0.24 0.12 0.16 0.10 0.14 

SAM-CPT-2 0.16 0.30 0.15 0.30 0.13 0.19 0.12 0.18 0.08 0.11 0.08 0.10 

SAM-CPT-3 0.20 0.35 0.19 0.34 0.16 0.22 0.15 0.21 0.10 0.12 0.10 0.12 

GAP-CPT-1 0.19 0.43 0.17 0.37 0.15 0.27 0.14 0.23 0.10 0.15 0.09 0.13 

GAP-CPT-2 0.20 0.34 0.18 0.30 0.16 0.21 0.15 0.19 0.11 0.12 0.10 0.11 

GAP-CPT-3 0.16 0.31 0.15 0.29 0.13 0.20 0.13 0.18 0.09 0.11 0.08 0.10 

 

At the Sampit site, SAM-SCPT-1 is in the vicinity of the sand blow at SAM-04 

that is associated with Episode B occurring 1021±30 years.B.P. At the Gapway site, 

GAP-SCPT-1 is in the vicinity of the sand blow at GAP-04 and GAP-SCPT-2 and GAP-

SCPT-3 are in the vicinity of the sand blows at GAP-03 and GAP-02, respectively. The 

sand blow at GAP-03 is associated with Episode E, 3548±66 years.B.P. and the sand 

blow at GAP-02 is associated with Episode F’ and F, occurring 5038±166 years.B.P. for 

a Northeast and Charleston source, respectively.  

The range of accelerations (preliminary) for these three episodes is shown in 

Table 3.6. Following the same trend as the data shown in Table 3.5, the newer method 

leads to lower accelerations than the previous approach for the CPT data set used herein. 

Research is still on-going to apply the newer methods to the CPT and SPT data set used 

by Hu et al. 2002b and Leon at al. 2005. 
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Table 3.6 Estimated peak ground accelerations of prehistoric earthquake episodes in the 

SCCP. 

 

Estimated Peak Ground Accelerations (g) 

E
p

is
o

d
e
 

Age, Years 

B.P. 
Source 

Associated 

Sand blow 

Hu et al., 

2002b 

Leon et al., 

2005 

This Study 

(Preliminary Range) 

Idriss& 

Boulanger 

2008 

Youd& 

Idriss 1997 

A 546±17 Charleston SAM-02 0.16 to 0.18 0.14 … 
 

B 1021±30 Charleston SAM-04 0.16 to 0.18 0.14 to 0.15 0.10 to 0.18 0.14 to 0.29 

C 1648±74 Northeast SAM-05 0.21 to 0.28 0.20 to 0.29 … 
 

C' 1683±70 Charleston SAM-05 0.16 to 0.17 0.14 to 0.15 … 
 

D 1996±212 South … 0.23 to 0.24 0.21 to 0.26 … 
 

E 3548±66 Charleston GAP-02 0.31 to 0.42 0.30 to 0.53 0.10 to 0.14 0.12 to 0.25 

F 5038±166 Northeast GAP-03 0.23 to 0.24 0.22 to 0.24 0.15 to 0.20 0.19 to 0.34 

F' 5038±166 Charleston GAP-03 … … 0.11 to 0.18 0.13 to 0.27 

 

3.5 CONCLUSION 

The prehistoric earthquake peak ground accelerations at the Sampit and Gapway 

sites in the South Carolina Coastal Plain were reassessed using cone penetration data 

corrected for the effect of time-dependent mechanisms (“aging”) together with the 

revised relations for cyclic resistance ratio of Idriss and Boulanger. The newer method 

leads to lower accelerations to initiate liquefaction than the previous approach. The 

difference is significant for lower magnitude earthquakes. The newer method resulted in 

accelerations that are about 50% less than from the previous method for M=5; whereas, 

the accelerations are about 23% less for M=7.5. 
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CHAPTER 4 

 

MAGNITUDES OF PREHISTORIC EARTHQUAKES AT THE HOLLYWOOD, SOUTH 

CAROLINA SITE
2 

                                                           
2 Gheibi, E., and Gassman, S. L. (2015). Geotechnical Special Publication, Vol.256. Page: 1246-1256, 

Paper, DOI: 10.1061/9780784479087.112. Reprinted here with permission of publisher. 
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ABSTRACT 

Pleistocene soil deposits show an increase in liquefaction resistance compared to younger 

deposits; thus, semi-empirical procedures for evaluating liquefaction potential that are 

derived from databases of young Holocene soils may not be applicable to aged soils. In 

this study, the minimum earthquake magnitude and peak ground acceleration required to 

initiate liquefaction were computed for soils estimated to be about 120,000 to 130,000 

years old at the Hollywood site located in the South Carolina Coastal Plain. Discovered 

sand blows at this site are associated with earthquakes that date back to 11,000 years 

before present. In-situ geotechnical data, including SPT and CPT with pore water 

pressure measurements, were used with empirical methods that account for the age of the 

soil deposit to back analyse the minimum earthquake magnitude and peak ground 

acceleration at the time of the prehistoric earthquakes. When the age of the earthquake 

was not considered, the magnitude ranged from 7 to 7.2 and the corresponding 

acceleration ranged from 0.23 to 0.35g. The earthquake magnitude at the time of 

earthquake was found to be lower when accounting for age; for the most recent 

prehistoric earthquake with the age of 546±17, the magnitude was reduced and ranged 

from 5.7 to 6.7 with corresponding acceleration ranging from 0.17 to 0.30g. 

4.1 INTRODUCTION 

The South Carolina Coastal Plain (SCCP) experiences infrequent earthquakes and 

paleoliquefaction analysis plays an important role in studying the paleoseismicity of this 

region. As an example, over 160 paleoliquefaction features have been discovered at a site 

near Hollywood, South Carolina (Obermeier et al. 1987) that have been associated with 

earthquakes dating from 500 to 11,000 years B.P. (Talwani and Cox 1985 and Weems et 
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al. 1986). From studies of these paleoliquefaction features, at least seven, large, 

prehistoric earthquakes have occurred within the last 6000 years in the SCCP with an 

average occurrence rate, based on the three most recent events, of about 500 years 

(Talwani and Schaeffer 2001).   

To estimate the minimum values of magnitudes (M) and peak ground 

accelerations (amax) needed for liquefaction to occur from these prehistoric earthquakes, 

Hu et al. 2002a and 2002b, used site-specific geotechnical data (penetration resistance 

and shear wave velocity) in the vicinity of paleoliquefaction features studied by Talwani 

and Schaeffer 2001 at two sites (Gapway and Sampit) near Georgetown, South Carolina 

and two sites near the Ten Mile Hill Air Force Base north of Charleston, South Carolina. 

The back-calculations were based on empirical correlations using Seed’s Simplified 

Method (Seed and Idriss 1971) as reported in Youd and Idriss 1997 that are extensively 

used to determine liquefaction resistance of sand deposits from in-situ soil indices (e.g. 

(N1)60 from the standard penetration test (SPT) and qc1 from the cone penetration test 

(CPT)). Similarly, Martin and Clough 1994 used the Seed et al. 1984 method, as well as 

the Ishihara 1985 method, to back-calculate the peak ground accelerations at the 

Hollywood site. 

The correlations between in-situ geotechnical data and cyclic resistance ratio used 

in these studies are primarily based on studies of recent earthquakes in Japan, China and 

the west coast region of the U.S. where the soil deposits are of Holocene age (<10,000 

years old). Therefore, Leon et al. 2005 developed a method to account for the effect of 

time-dependent mechanisms (“aging”) on the back-calculated magnitudes and peak 

ground accelerations for the sand deposits in the SCCP that are older than 100,000 years 
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and obtained an approximately 0.9 unit reduction in magnitude and 15% reduction in 

peak ground acceleration. Neglecting the effect of aging resulted in a 60% 

underestimation of CRR (Leon et al. 2006). 

Furthermore, since the time of the earlier back-calculations, Idriss and Boulanger 

2008 have reexamined Seed’s original method and have proposed new relations for the 

stress reduction factor (rd), earthquake magnitude scaling factor for cyclic stress ratios 

(MSF), overburden correction factor for cyclic stress ratios (Kσ), and the overburden 

normalization factor for penetration resistances (CN). Gheibi and Gassman 2014 and 

Gheibi et al. 2013 reviewed the prehistoric earthquake magnitudes and effect of aging on 

soil resistance against liquefaction at Hollywood and Fort Dorchester sites, respectively. 

In general, Gheibi and Gassman 2014 also found that using the newer method reduces the 

acceleration values about 50% for M=5 and 23% for M=7.5 for the Gapway and Sampit 

sites when compared to using Seed’s original method. 

Therefore, the purpose of this paper is to back-calculate the minimum magnitude 

and acceleration required to initiate liquefaction and form the paleoliquefaction features 

associated with prehistoric earthquakes at the Hollywood site using the newer semi-

empirical method of Idriss and Boulanger 2008 and time-dependent approach of Leon et 

al. 2005. The results will be compared to earlier back-calculations by Martin and Clough 

1994. 

4.2 SITE STUDIED 

The Hollywood site is located 0.8 km northeast of the town of Hollywood, South 

Carolina. Obermeier et al. 1987 reported finding 162 liquefaction features along the side 

walls of two flood control channels excavated at the site. Many of the observed features 
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are sand blows as large as 8 feet diameter from prehistoric earthquakes and some are 

minor fissures related to the Charleston earthquake of 1886. Talwani and Cox 1985 and 

Weems et al. 1986 have used radiocarbon dates of the trapped organic material in and 

around sand blows to estimate the times of formation of the sand blows. Based on 

calibrated ages described in Talwani and Schaeffer 2001, times of sand blow formation 

range from 500 to 11,000 years B.P. and have been associated with four episodes: 

Episode A occurring 546±17 years B.P., Episode B 1021±30 years B.P., Episode E 

3548±66 years B.P. and Episode F 5038±166 years B.P.  

The in-situ data used in this study were obtained along an east-west exploration 

alignment that is parallel to one of the flood control channels and lies along the flank of a 

Pleistocene beach deposit with soils estimated to be about 120,000 to 130,000 years old 

(Weems et al. 1986). The alignment includes three CPTs (HWD-CPT-4, HWD-CPT-5 

and HWD-CPT-6) and one SPT with energy measurements (HWD-SPTE-1) that were 

performed as part of a larger study to investigate the effect of aging on the liquefaction 

potential of SCCP soils (e.g. Hasek 2016, Williamson and Gassman 2014, and Hayati et 

al. 2008). Figure 4.1shows the CPT tip resistance and the SPT blow count profiles 

obtained at the site. Note that HWD-SPTE-1 is located near HWD-CPT-4. The water 

table depth was in the range of 1.7 to 2.3 m below the ground surface from 2007 to 2010. 

Laboratory index tests were performed on the SPT split spoon samples to characterize the 

soil and obtain the fines content.  

The soil classification chart of Robertson 1990, was used to obtain the soil 

profiles shown in Figure 4.2. Samples from the SPT split spoon, near HWD-CPT-4, were 

used to classify the soil according to USCS. The general soil profile along the testing 
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alignment consists of about 2.30 m of silty sand with average CPT tip resistance as 

shown in Figure 4.1 of about 15 MPa (maximum of 18 to 24 MPa) and blow counts 

between 4 and 17. The underlying layer is the source sand layer and consists of 1.4 to 2 m 

of clean sand to silty sand with an average tip resistance value of 6 MPa and average 

blow count of 6. This layer is underlain by a mixture of clayey silt to sandy silt and silty 

sand. 

 

 
 

Figure 4.1 CPT and SPT profiles at the Hollywood sites. 

 

The source sand layer identified in Figure 4.2 is the layer most prone to 

liquefaction. This layer was identified using the interpretation of SPT blow counts, CPT 

tip resistance, excess pore water pressure, fines content and soil type. The fines content is 

in the range of 8 to 13% and excess pore pressures did not develop during the CPT push 

at any of the test locations. The equivalent clean sand tip resistance, (qc1N)cs, and SPT 

blow counts, (N1)60, are less than 160 and 30 in the source sand which are the boundaries 

for liquefiable/nonliquefiable soils per Robertson and Wride 1998, and Youd and Idriss 

1997.  
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Earlier studies by Martin 1990, included eleven CPTs, eight SPTs and twelve 

auger borings. The soil profile was described to consist of about 2.6 m of clean, fine 

dense sand underlain by 2.3 m of clean, fine loose sand which was identified as the 

source of liquefied materials (Martin and Clough 1994) and is in general agreement with 

the study herein. All fines were non-plastic silts. 

 

 
 

Figure 4.2 Soil profile at Hollywood. 

 

4.3 FRAMEWORK FOR AGE AND DISTURBANCE CORRECTION 

The methodology of Leon et al. 2005, Was used to correct the cone penetration tip 

resistance, qc1, and SPT blow count, (N1)60, for 1) aging of the soil and 2) disturbance due 

to post-liquefaction consolidation (primary) and densification (or loosening). The method 

is based on the idea that the empirical correlations for liquefaction evaluation applicable 

for young or freshly deposited soils can be used for the older soil deposits as long as the 

currently measured penetration resistances are modified to account for the effect of aging. 
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By correcting the currently recorded in situ geotechnical data for aging, the 

corresponding data immediately after the earthquake for the sites that liquefied are 

determined and termed “post-earthquake”. These data are further corrected for 

disturbance from the earthquake to obtain the “pre-earthquake” data. 

The method accounts for disturbance due to the liquefaction event and post-

liquefaction aging using two different approaches. Approach 1 is based on the relations 

offered by Mesri et al. 1990, for both the age and disturbance correction and Approach 2 

is based on work by Kulhawy and Mayne 1990, for the age correction and Seed et al. 

1988 for the disturbance correction. As suggested by Ellis and De Alba 1999, and Stark 

et al. 2002, Leon et al. 2005, considered the change in relative density (∆DR) to be 5% 

and 10% between the pre- (qc1 (pre) and (N1)60 (pre)) and post- (qc1 (post) and (N1)60 (post)) 

earthquake state.  

The average qc1 (pre) and qc1 (post) values of tip resistance found using this method 

for the ages associated with earthquake Episodes A, B, E and F from Talwani and 

Schaeffer 2001, are summarized in Table 4.1. As shown, qc1 (post) is less than qc1 (pre) for 

Approach 1; whereas, qc1 (post) is greater than or equal to qc1 (pre) for Approach 2. In both 

cases the average values of tip resistance corrected for both age and disturbance are less 

than current measurements. 

The average (N1)60 (pre) and (N1)60 (post) values found using the blow count data 

from HWD-SPTE-1 are summarized in Table 4.2. In addition, blow counts obtained 

through correlations to the CPT data obtained at HWD-CPT-4, -5 and -6 using Lunne et 

al. 1997 are also shown. The blow counts obtained in the field at HWD-SPTE-1 differ 



www.manaraa.com

63 

from those obtained through correlation at HWD-CPT-4, the CPT closest to the SPTE 

test, by 7 units. 

 

Table 4.1 Average values of age-corrected tip resistance for source sand layer. 
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10 

4/7 3/5 8/8 8/8 

B 1021±30 3/6 3/4 8/8 8/7 3/6 2/4 7/7 7/7 4/7 3/4 8/8 8/8 

E 3548±66 3/5 2/3 8/7 8/7 3/5 2/3 7/7 7/7 3/6 2/4 8/8 8/8 

F 5038±166 3/5 2/3 8/7 8/7 3/5 2/3 7/7 7/7 3/6 2/3 8/8 8/8 

 

Table 4.2 Average values of age-corrected blow counts for source sand layer. 
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A 546±17 

11 

4/7 3/5 8/6 8/5 

18 

7/12 5/8 14/11 14/9 

17 

6/11 5/7 13/11 13/8 

19 

7/13 6/8 15/12 15/10 

B 1021±30 4/7 3/4 8/6 8/5 6/11 5/7 14/11 14/9 6/11 4/7 13/11 13/8 7/12 5/8 15/12 15/10 

E 3548±66 3/6 2/4 8/6 8/5 5/10 4/6 14/11 14/9 5/9 4/6 13/10 13/8 6/11 4/6 15/12 15/10 

F 5038±166 3/6 2/3 8/6 8/4 5/10 4/6 14/11 14/9 5/9 4/5 13/10 13/8 6/10 4/6 15/12 15/10 

 

4.3.1 Back-Calculation of the Earthquake Magnitude 

The earthquake magnitude was back-calculated using the Energy Stress method 

(Hu et al. 2002b) which relates the seismic intensity at the site in terms of magnitude, M, 

in Richter, hypocentral distance, Rh, in km, and liquefaction susceptibility represented by 

(N1)60 in the following equation: 

 



www.manaraa.com

64 

𝑀 =
2

3
log⁡[1.445𝑅2(𝑁1)60

6.06]⁡ 
(4.1) 

 

This relationship is assumed to be applicable for world-wide tectonic conditions, 

recognizing that the magnitude could be constrained further knowing localized 

information such as stress drop, focal depth, the degree of liquefaction susceptibility on 

the extent of liquefaction, and the attenuation of bedrock shaking (Obermeier and Pond 

1999). Uncertainties regarding back-calculation of earthquake magnitudes and peak 

ground accelerations are presented in Olson et al. 2005.  

   Two possible earthquake sources: 1) the NE trending Wood Stock Fault (WF) 

and 2) NW trending Sawmill Branch Fault (SBF) identified by Dura-Gomez and Talwani 

2009, were considered to obtain the epicentral and hypocentral distances. Epicentral 

distances from WF and SBF are considered to be 25 km for Hollywood and hypocentral 

distances, rounded to the nearest km are one more km than the epicentral distances. 

4.3.2 Back Analysis of Peak Ground Acceleration 

The peak ground acceleration at the surface, amax, was found using the following 

equation for the cyclic stress ratio for a given earthquake (CSRM,σvc
, ) given by Idriss and 

Boulanger 2008: 

 

𝐶𝑆𝑅𝑀,𝜎𝑣𝑐′ = 𝐶𝑅𝑅𝑀=7.5,𝜎𝑣𝑐′ =1 ∗ 𝑀𝑆𝐹 ∗ 𝐾𝜎 = ⁡0.65 ∗ 𝑟𝑑 ∗ (
𝜎𝑣0 ∗ 𝑎𝑚𝑎𝑥
𝜎𝑣0
′ ∗ 𝑔

)⁡⁡ (4.2) 

 

where σv0 is the vertical stress and σv0
′  is the vertical effective stress at depth z, and rd is 

the reduction factor that considers the flexibility of soil column. A coefficient of 0.65 is 
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applied to consider the significant cycles during the earthquake. The magnitude scaling 

factor (MSF) is used for earthquakes with magnitudes other than 7.5. The proposed 

relations of MSF, rd, Kσ and CN of Idriss and Boulanger 2008 were used in this study. Kσ 

is the overburden correction factor which has effect on SPT blow counts (N1)60, and 

normalized cone penetrometer resistance (qc1N)cs for calculation of CRR and is achieved 

using the following equation: 

 

Kσ = 1 − Cσ ln (
σv0
′

Pa
) ≤ 1.1;⁡Cσ =

1

37.3 − 8.27(qC1N)0.264
≤ 0.3, ⁡qC1N ⁡≤ 211⁡ 

(4.3) 

 

qc1N is the normalized value of qc1 (qc1N=qc1/Pa) to obtain a dimensionless value of 

penetration resistances in sand to an equivalent σv0
′  of one atmosphere. qc1 is the 

corrected value of tip penetration resistance for overburden pressure and is defined by 

Equation 4.4. 

 

qc1 = qc ∗ CN, CN = (
Pa
σv0
′ )

β

≤ 1.7,⁡⁡⁡β = 1.338 − 0.249(qC1N)
0.264⁡, 21 ≤ qc1N ⁡≤ 254⁡⁡ 

(4.4) 

 

An iterative procedure is needed to determine the CN and qc1 because CN depends 

on qc1 and qc1 depends on CN. In this research 100 times of iteration is done to achieve 

qc1N. Note that following the Idriss and Boulanger 2008, procedure, qc1Ncs is applied 

instead of qc1N in Equation 4.3 and 4.4.  

Idriss and Boulanger 2008, also re-evaluated the CPT-based liquefaction 

correlation using an expanded case history database of liquefaction/no liquefaction sites 
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and adjusted the relation to reflect the number of equivalent cycles that had occurred up 

to the time when liquefaction was triggered for cases where liquefaction occurs early in 

shaking. The relation between CRR and (qc1N)cs is given by:  

𝐶𝑅𝑅𝑀=7.5,𝜎𝑣𝑐
, =1 = 𝑒𝑥𝑝 {

(𝑞𝑐1𝑁)𝑐𝑠
540

+ (
(𝑞𝑐1𝑁)𝑐𝑠
67

)
2

− (
(𝑞𝑐1𝑁)𝑐𝑠
80

)
3

+ (
(𝑞𝑐1𝑁)𝑐𝑠
114

)
4

− 3}⁡ 
(4.5) 

 

(qc1N)cs is the equivalent clean-sand value of the corrected tip resistance, computed by:  

 

(qc1N)cs = qc1N + ∆qc1N⁡,⁡⁡⁡⁡∆qc1N = (5.4 +
qC1N
16

) ∗ exp {1.63 +
9.7

FC + 0.01
− (

15.7

FC + 0.01
)
2

}⁡ 
(4.6) 

 

FC is the fines content percentage which was about 10% at the Hollywood site. The 

(qc1N)cs values that correspond to the qc1(pre) values in Table 4.1 are shown in Table 4.3. 

 

Table 4.3 Average values of (qc1N)cs (pre) corresponding to qc1(pre). 
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A 546±17 
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B 1021±30 74 48 87 85 68 45 81 79 81 53 96 94 

E 3548±66 65 42 86 84 60 39 79 78 72 46 94 92 

F 5038±166 63 40 85 83 58 37 79 77 69 44 93 92 

 

4.4 RESULTS 

4.4.1 Earthquake Magnitude 

The minimum estimated magnitudes obtained from the Energy Stress method are 

shown in Table 4.4. Using the current in-situ soil properties ((N1)60 current in Table 4.2) the 
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results range from 6.3 (using HWD-SPTE-1) to an average of 7.1 (using HWD-CPT-4, -5 

and -6). When the soil properties are corrected ((N1)60 pre in Table 4.2) for age and 

disturbance of each earthquake episode, the magnitude is reduced. The reduction ranges 

from 0.5 to 1.3 units for Episode A and is greater for older earthquakes (e.g. reduction of 

0.7 to 1.8 units for Episode F). Note that the magnitudes obtained from the Energy Stress 

Method (Equation 4.1) using the SPT data (HWD-SPTE-1) are 0.5 to 1 units less than 

when obtaining (N1)60 from the CPT data (HWD-CPT-4, -5 and -6) via the Lunne et al. 

1997, correlation. 

 

Table 4.4 Earthquake magnitudes.  

 

Episode 

Age, 

years 

B.P. 

HWD-SPTE-1 HWD-CPT-4 HWD-CPT-5 HWD-CPT-6 

Current Aged Current Aged Current Aged Current Aged 

A 546±17 

6.3 

5.1 to 5.7 

7.1 

5.8 to 6.5 

7 

5.7 to 6.4 

7.2 

6 to 6.7 

B 1021±30 5 to 5.6 5.7 to 6.4 5.5 to 6.3 5.8 to 6.5 

E 3548±66 4.8 to 5.5 5.4 to 6.3 5.3 to 6.2 5.6 to 6.5 

F 5038±166 4.7 to 5.5 5.3 to 6.3 5.2 to 6.2 5.5 to 6.5 

 

4.4.2 Peak Ground Acceleration 

Using the age-corrected (qc1N)cs(pre) values from Table 4.3, the CRRM=7.5 values 

found from Equation 4.2, representing those at the time of the earthquake at each episode 

for HWD-CPT-4, -5, and -6, are presented in Table 4.5. 

 

Table 4.5 Average values of CRRM=7.5. 

 

Episode 
Age, years 

B.P.  

CRR M=7.5 (Average of Approach 1 and 2) 

HWD-CPT-4 HWD-CPT-5 HWD-CPT-6 

ΔDR 5% ΔDR 10% ΔDR 5% ΔDR 10% ΔDR 5% ΔDR 10% 

A 546±17 0.12 0.11 0.11 0.10 0.14 0.12 

B 1021±30 0.12 0.11 0.11 0.09 0.13 0.11 

E 3548±66 0.12 0.10 0.10 0.09 0.12 0.11 

F 5038±166 0.11 0.10 0.10 0.09 0.12 0.11 
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The peak ground acceleration, amax, found using Equation 4.2 and the CRR values 

in Table 4.5 are summarized for earthquake magnitudes M=5, M=6 and M=7 in Table 

4.6. Stronger earthquakes need less acceleration for the soil to be liquefied; e.g., for 

Episode A, the peak ground accelerations range from 0.25 to 0.34g for M=5 which are 

greater than the range of 0.15 to 0.21g for M=7. 

 

Table 4.6 Peak ground acceleration for source sand layer. 

 

Episode, 

years B.P. 
Location 

Peak Ground Acceleration (g) 

M=5 M=6 M=7 

ΔDR  5% ΔDR  10% ΔDR  5% ΔDR  10% ΔDR  5% ΔDR  10% 

A  

546±17 

HWD-CPT-4 0.32 0.27 0.26 0.22 0.20 0.17 

HWD-CPT-5 0.29 0.25 0.23 0.20 0.18 0.15 

HWD-CPT-6 0.34 0.29 0.28 0.23 0.21 0.18 

B  

1021±30 

HWD-CPT-4 0.31 0.26 0.25 0.21 0.19 0.16 

HWD-CPT-5 0.28 0.24 0.22 0.19 0.17 0.15 

HWD-CPT-6 0.33 0.28 0.27 0.22 0.20 0.17 

E  

3548±66 

HWD-CPT-4 0.29 0.25 0.24 0.20 0.18 0.15 

HWD-CPT-5 0.26 0.23 0.21 0.19 0.16 0.14 

HWD-CPT-6 0.31 0.26 0.25 0.21 0.19 0.16 

F 

5038±166 

HWD-CPT-4 0.29 0.25 0.23 0.20 0.18 0.15 

HWD-CPT-5 0.26 0.23 0.21 0.18 0.16 0.14 

HWD-CPT-6 0.30 0.26 0.24 0.21 0.18 0.16 

 

Also, for a given earthquake magnitude, the peak ground accelerations decrease 

as the soil age increases. For instance, when M=5, acceleration in Episode A for the 

HWD-CPT-4 is in the range of 0.27 to 0.32g while, with increase in the soil age in 

Episode F, acceleration ranges from 0.25g to 0.29g. For the cases when relative density 

changes more during the earthquake (i.e. more disturbance is assumed to occur when 

ΔDR=10% compared to ΔDR=5%) around 15% less acceleration is needed for the soil to 

be liquefied. 

Note that the Youd and Idriss 1997, method that was used in the Leon et al. 2005, 

results in higher values of acceleration. The increase is greater for lower magnitudes. As 
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was shown for the Gapway and Sampit sites in the SCCP (Gheibi and Gassman 2014), 

the accelerations found from the Idriss and Boulanger 2008, method are about 50% for 

M=5 and 23% for M=7.5 lower than found using Youd and Idriss 1997. 

It is also important to note that when correcting for both age and disturbance 

(using qc1 (pre) and (N1)60 (pre) per Leon et al. 2005) the results for acceleration are up to 

0.04g higher (based on HWD-5 data and Episodes A and B) than when a correction is 

made for age only (using qc1 (post) and (N1)60 (post)); the results for magnitude are up to 0.6 

units higher (range from 5.1 to 6.6 for Episode A and from 5.0 to 6.6 for Episode B). The 

Energy Intensity equation (Pond and Martin 1997) used in the Energy Stress method (Hu 

et al. 2002b) and the Simplified Method stress boundary curves are based on field data 

measured after earthquakes and thus using these methods may inherently account for 

disturbance. However, it is unknown if time dependent mechanisms were present at these 

sites prior to liquefaction.  

The minimum earthquake magnitude and peak ground acceleration at the time of 

earthquake were calculated for each episode and the range of values for all test locations 

are summarized in Table 4.7. As shown, an increase in the soil age leads to a decrease in 

the required magnitude and peak ground acceleration for liquefaction initiation at time of 

earthquake. For instance, the range of earthquake magnitude is 5.7 to 6.7 with the 

corresponding acceleration range of 0.17 to 0.3 g when the soil age is 546 years B.P.; 

whereas, the earthquake magnitude and accelerations are in the range of 5.2 to 6.5 and 

0.16 to 0.29 when the soil age is 5038 years B.P. 

The magnitudes and peak ground accelerations for the range of parameters 

examined in this study are compared to those previously found by Martin and Clough 
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1994, in Table 4.7. Assuming the whole source sand layer to be liquefied, Martin and 

Clough 1994, back calculated the peak ground acceleration at the Hollywood site to be 

0.3g based on the Seed et al. 1984, method and 0.2g from the Ishihara 1985, method. 

They combined the Seed and Ishihara procedures and found amax equal to 0.25g for 

M=7.5. In this study, when M=7.5 and the current in-situ data are used, the acceleration 

ranges from 0.21 to 0.3g which is in a good agreement with the accelerations from Martin 

and Clough 1994. For a magnitude in the range of 7 to 7.2, as was found from the Energy 

Stress method in this work, the corresponding acceleration ranges from 0.23 to 0.35g 

which is slightly greater than the accelerations for M=7.5.  

 

Table 4.7 Estimated peak ground accelerations.  

 

Episode, 

years B.P. 

This study Martin and Clough 1994 

Age Corrected  Current  Current 

M amax (g) M amax (g) M 

amax (g) 

Seed et al 

(1984) 

Ishihara 

(1985) 

Martin Clough 

(1994) 

 A (546±17)  5.7-6.7 0.17-0.30 

7 -7.2 0.23-0.35 7.5 0.3 0.2 0.25 
 B (1021±30) 5.5-6.5 0.17-0.30 

 E (3548±66) 5.3-6.5 0.17-0.29 

 F (5038±166) 5.2-6.5 0.16-0.29 

 

4.5 CONCLUSIONS 

The earthquake magnitudes and peak ground accelerations associated with four 

episodes of prehistoric earthquakes at the Hollywood site in the South Carolina Coastal 

Plain were back analysed using in-situ geotechnical data and time-dependent procedures 

to correct for the age of the earthquake. For the most recent episode (546±17 years B.P.), 

the magnitude ranged from 5.7 to 6.7 and for the oldest earthquake (5038±166 years 

B.P.) was found to decrease to the range of 5.2 to 6.5. The corresponding accelerations 

ranged from 0.16 to 0.30g. When the age of the earthquake was not considered, the 
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magnitude was greater and ranged from 7 to 7.2 with corresponding peak ground 

accelerations of 0.23 to 0.35g which is in good agreement with earlier studies that did not 

consider age. 
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CHAPTER 5 

 

APPLICATION OF GEOTECHNICAL DATA TO DETERMINE A CHARLESTON-AREA 

PREHISTORIC EARTHQUAKE MAGNITUDE 
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ABSTRACT 

A sand blow from a paleo-earthquake was identified at Fort Dorchester, South Carolina 

in 2007. Geotechnical field investigations indicate the thickness of the source sand layer 

ranges from 1.2 to 3.1 m and the depth below the ground surface to the top of the layer 

ranges from 2.3 to 3.9 m. The layer is predominantly angular to subangular silty quartz 

sand with a fines content of 4 to 22 % and the predominant mean grain diameter of 0.18 

to 0.26 mm. The geotechnical data were used with paleoliquefaction evaluation methods 

and three independent relations to account for soil aging to estimate the minimum 

magnitude and peak ground acceleration of the prehistoric earthquake. For a range of 

magnitude from 5.1 to 6.2, acceleration is constrained from about 0.19 to 0.40 g. When 

the size of the fault is considered, the magnitude is 5.6 and the acceleration ranges from 

0.21 to 0.36 g. 

5.1 INTRODUCTION 

Paleo-seismology is being used increasingly in seismic hazard analysis. In the 

eastern United States, the indirect effects of prehistoric earthquakes occur as seismically-

induced liquefaction features such as sand blows that are embedded in shallow, soft 

sediments. By dating trapped organic material in and around sand blows, it is possible to 

reconstruct the chronology of past earthquakes associated with liquefaction and their 

recurrence rates (Talwani and Schaeffer 2001; Tuttle et al. 2002). 

In the South Carolina Coastal Plain (SCCP), studies over the past two decades 

have revealed at least seven, large, prehistoric earthquakes occurring within the last 6000 

years with an average occurrence rate, based on the three most recent events, of about 

500 years (Talwani and Schaeffer 2001). Using site-specific geotechnical data 
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(penetration resistance and shear wave velocity) at four locations in the vicinity of 

paleoliquefaction features in the SCCP, Hu et al. 2002a,b back-calculated the minimum 

magnitude and peak ground accelerations of prehistoric earthquakes. The back-

calculations were based on empirical formulas developed for Holocene soils. However, 

the sand blows studied in the SCCP occurred in soils that are up to 250,000 years in age. 

When a correction was made for the age of the soils, the estimate of the minimum 

magnitudes of the prehistoric earthquakes associated with liquefaction features were 

reduced by approximately 0.9 units (Leon et al. 2005) and the associated cyclic resistance 

ratios (CRR) were reduced by 60% (Leon et al. 2006). 

Recently, a sand blow was discovered at the Colonial Dorchester State Historical 

Park (Talwani, et al. 2011). The 1886 Charleston earthquake caused significant structural 

damage to the walls of the fort; however, field evidence indicates that liquefaction did not 

occur during the 1886 earthquake. Thus, the recently discovered sand blow is evidence of 

liquefaction that occurred during a prehistoric earthquake that pre-dates the Charleston 

1886 earthquake. The site provides additional information for determining the age-related 

liquefaction potential of SCCP soils and the investigation of an older paleo-liquefaction 

feature. The purpose herein is to estimate the minimum earthquake magnitude and peak 

ground acceleration at a site where paleoliquefaction is known to have occurred and at 

which the minimum age of the sand blow is known. This is accomplished by using 

geotechnical field and laboratory data that have been collected at the Fort Dorchester site 

and by using newer methods of analysis that have a time-dependent function. 
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5.2 SITE DESCRIPTION 

The Fort Dorchester site is located approximately eight kilometers southeast of 

Summerville, South Carolina and overlooks the Ashley River as shown in Figure 5.1. The 

Fort is situated on flat ground, and the ground slopes moderately to the west and gently to 

the south towards the Ashley River, slopes gently to the east, and is flat to the north. The 

foundation level of the fort proper sits on a bluff that is about 7.5 m higher than the 

Ashley River and is underlain by the Ten Mile Hill beds that were deposited during the 

early to middle Pleistocene (200 ka) as fluvial-estuarine deposits (Weems and Lemon 

1984). Following the Charleston 1886 earthquake, significant structural damage was 

noted in the fort walls by Dutton 1888. Damage to the fort includes numerous fractures - 

the most prominent being in the north wall (up to 7 cm offset) and the south wall (up to 

10 cm offset) - with left lateral offsets for both walls. The strike slip movements were 

associated with the 1886 Charleston earthquake (Talwani et al. 2011).  

In 2007, Talwani et al. 2011 dug an E-W trench on the north side of the fort and 

discovered a sand blow along a ~N30W line joining the crack in the southern wall with 

that in the northern wall. By comparing the location of the offset walls and the discovered 

sand blow with subsurface geological, seismic reflection, and seismicity data, the sand 

blow was interpreted to be associated with a splay of the Sawmill Branch fault. The splay 

is located below Fort Dorchester where a left lateral motion was observed. Talwani et al. 

2011 used the water table level, geomorphological profile and absence of a sharp 

boundary between the sand blow and surrounding clay to estimate the age of the 

earthquake that created the sand blow to have occurred 3,500 years B.P. or earlier. 
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Figure 5.1 Geology of the Fort Dorchester area 

(adapted from Weems and Lemon, 1984). 

 

5.3 GEOTECHNICAL FIELD AND LABORATORY DATA 

The geotechnical properties of the soils were determined at the locations shown in 

Figure 5.2. Site exploration included four cone penetration tests (CPT-FD-1, -2, -3, and -

7A) with pore pressure measurements, one piezometer (PZ-FD-1 installed at CPT-FD-

7A), and a shallow trench at the sand blow. The trench was excavated to view the soil 

fabric of the sand blow and to obtain samples for carbon dating (Talwani et al. 2011). In 

addition, three vibracore soil cores (VC-1, VC-2, and VC-3) were obtained by the South 

Carolina Geological Survey (Doar 2007) to depths up to 7 m below ground surface. 

Laboratory index tests were performed on soils from each of the vibracores. The tests 

included grain size distribution (ASTM D422-63(2007)e2), Atterberg limits (ASTM 

D4318-10e1 (2010)), specific gravity (ASTM D854-14 (2014)) and soil classification 

(ASTM D2487-11 (2011) and D2488-09a (2009)). 
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Figure 5.2 Locations of field tests and profile alignments. 

 

The exploration alignments are oriented east-west and north-south as shown in 

Figure 5.2 with the respective profiles shown in Figures 5.3 and 5.4. The profiles 

delineate the soil strata and water table elevations as they were interpreted from the CPT 

tip and sleeve stresses and the vibracore logs. In the vicinity of the sand blow, the soil 

profile includes approximately 1.5 m of sandy clay and silty clay overlying the source 

sand that is about 3.0 m thick. This is underlain by approximately 1.3 m of silty and 

clayey sand followed by about 1.5 m of sandy silt and then by about 1.4 m of silty and 

clayey sand. The present-day water table measured at PZ-FD-1, which is furthest from 

the river, ranges from 5.2 to 5.5 m below the ground surface. 
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Figure 5.3 Subsurface profile of the northern East-West alignment.  
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Figure 5.4 Subsurface profile of the North-South alignment.  



www.manaraa.com

80 

The source sand layer was identified using the results from cone penetration tests 

at CPT-FD-2 and CPT-FD-3, the field logs from co-located vibracores VC-1 and VC-3 

and laboratory index testing on the retrieved vibracore soil samples. Similar sand layers 

were also encountered in VC-2 and the CPT-FD-1, -4, -5 and -7 profiles and were used to 

interpret the source sand layer depth and thickness on the east-west and north-south 

alignments as shown in Figures 5.3 and 5.4. The source sand layer depth, elevation and 

thickness, and the present-day water table depth for each of the test locations are 

summarized in Table 5.1.   

 

Table 5.1 Source sand layer depth, elevation, thickness, and water table depth. 

 

Location No. 

Source 

Sand Depth 

Range (m) 

Ground Surface 

Elevation (m) 

above Mean Sea 

Level 

Thickness of 

Source Sand 

(m) 

Present 

Water Table 

Depth (m) 

CPT-FD-1 2.3 to 5.5 8.40 3.2 5.5 

CPT-FD-2 2.4 to 5.6 8.04 3.2 5.3 

CPT-FD-3 1.6 to 4.8 7.59 3.2 5.4 

CPT-FD-4 3.3 to 4.6 7.09 1.3 4.8 

CPT-FD-5 1.5 to 3.4 4.63 1.9 3.5 

CPT-FD-7A 2.4 to 5.5 8.00 3.1 5.2 

VC-1 2.4 to 4.5 8.04 3.1 -- 

VC-2 2.3 to 5.0 7.80 3.2 -- 

VC-3 1.6 to 4.8 7.59 3.2 -- 

Sand blow 2.3 to 5.0 7.80 2.7 -- 

 

The physical characteristics of the source sand layer were obtained through 

laboratory testing of the vibracore samples and are summarized in Table 5.2. Figure 5.5 

shows the distribution of these characteristics with depth. The soils of the source layer 
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range from reddish-brown mottled to tan to light gray predominantly silty sands with 

minor occurrences of poorly-sorted sands and clayey sands. The fines content (< #200 

sieve) ranges from 4 to 22% with 70% of the samples containing 10 to 20% fines, the 

majority of the mean grain diameter, D50, values range from 0.18 to 0.26 mm, and the 

soils are rapidly dilatant per ASTM D2488-09a (2009). The soils consist almost entirely 

of angular to subangular quartz with small to trace quantities of mica, feldspar, and 

opaque minerals. In the dry state, the source sand has a low strength, is friable, and when 

wetted exhibits a high degree of slaking. Due to core quality, the dry unit weights in 

Table 5.2 are approximate and the majority of values range from about 13 to 15 kN/m3. 

None of the samples show an indication of carbonates, but there is an indication of 

phosphates in soils underlying the source sand. 

As shown in Figure 5.5, the source sand average fines contents for VC-1, VC-2, 

and VC-3 are 14%, 19%, and 13 %, respectively. The average D50 of the source sand at 

VC-1, VC-2, and VC-3 are 0.20 mm, 0.19 mm, and 0.21 mm, respectively. In addition to 

other index properties, the physical and chemical properties of the source sand indicate 

liquefaction-susceptibility due to a low unit weight, a lack of cementitious components, 

and little to no cohesion. The fines in the source sand have a liquid limit that ranges from 

18 to 32 and a plasticity index from 0 to 5, which indicates the fines in the source sand 

have low-plasticity. The source sand is classified as SM, SP or SC-SM according to the 

Unified Soil Classification System. Based on criteria determined in studies by Bray and 

Sancio 2006, Boulanger and Idriss 2006, and Andrews and Martin 2000 concerning the 

effect of plastic and non-plastic fine-grained soils on liquefaction, the plasticity index, 

liquid limit, and moisture content indicate the source sand is susceptible to liquefaction.  
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Table 5.2 Source sand index test results. 

 

Vibracore 

No. 

Depth 

(m) 
Gs 

γd 

(kN/m3) 

D50 

(mm) 

< #200 

(%) 
LL PI 

USCS 

Soil 

Type 

VC-1 2.82 2.70 13.8 0.17 21.6 26 5 SC-SM 

VC-1 3.87 2.70 13.9 0.22 8.0 - - SP-SM 

VC-1 4.39 2.69 - 0.48 15.3 - - SC-SM 

VC-1 4.63 2.68 - 0.21 12.9 - - SC-SM 

VC-2 2.37 2.68 14.4 0.23 16.1 22 0 SM 

VC-2 2.90 2.69 14.3 0.17 18.3 22 0 SM 

VC-2 3.36 2.70 13.5 0.16 21.6 32 4 SC-SM 

VC-2 3.58 2.66 19.7 0.17 19.7 - - SM 

VC-2 4.05 2.65 15.1 0.25 17.1 - - SM 

VC-2 4.36 2.65 13.0 0.68 19.3 - - SM 

VC-3 1.73 2.72 - 0.22 15.9 22 0 SM 

VC-3 1.95 2.70 13.2 0.19 19.0 24 3 SM 

VC-3 2.32 2.69 14.0 0.20 4.1 - - SP 

VC-3 2.84 2.68 14.2 0.21 9.7 - - SP 

VC-3 3.82 2.76 15.0 0.24 10.1 - - SP 

VC-3 4.13 2.68 - 0.18 19.3 - - SP 

VC-3 4.59 2.65 17.4 0.26 11.0 18 1 SM 

GS is the specific gravity  

γd is dry unit weight 

D50 is value of the particle diameter at 50% in the cumulative distribution 

LL is the liquid limit 

PI is the plasticity index 
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Figure 5.5 Index properties of soils from vibracores. 

 

For CPT-FD-1, -2, -3 and -7A (the test locations encompassing the sand blow), 

the empirically observed upper limit for liquefaction of (qc1N)cs = 211 (Idriss and 

Boulanger 2008) (where (qc1N)cs is the clean sand equivalent of the normalized cone tip 

resistance) was used to identify the depth and thickness of the portion of the source sand 

layer that is susceptible to liquefaction at present. Note that the soil behavior type index 

from CPT data, Ic, was also less than 2.6 (Robertson and Wride 1998) within the 

specified liquefiable depth. The average cone tip resistance, qc, normalized cone tip 
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resistance, qc1N, sleeve stress, fs, and friction ratio, Fr, within the portion of the source 

sand layer susceptible to liquefaction are presented in Table 5.3. The average corrected, 

normalized blow counts, (N1)60, derived from Lunne et al. 1997, are also shown. For the 

four test locations, the average qc ranges from 5 to 8 MPa and the corresponding qc1N 

ranges from 75 to 103. The average fs range from 45 to 122 kPa and the average Fr ranges 

from 1.03 to 2.25. The derived (N1)60 ranges from 16 to 20. 

The source sand is about 200,000 years old (McCartan et al. 1984; Weems and 

Lemon 1984) and is part of the Ten Mile Hill beds that were deposited during the early to 

middle Pleistocene as fluvial/lagoonal and possibly beach deposits as noted from 

inspection of the vibracores. 

 

Table 5.3 CPT results for the source sand layer susceptible to liquefaction.  

 

CPT 

No. 

Liquefaction  

Susceptible 

Layer qc 

(MPa) 
qc1N 

fs 

(kPa) 

Fr (1) 

(%) 
(N60) 

(2) (N1)60 

Depth 

(m) 

Thickness 

(m) 

FD-1 2.3 to 5.4 3.1 
5 

(0.3 to 11) 

87 

(21 to 151) 

45 

(8 to 153) 

1.5 

(0.46 to 7) 

11 

(2 to 19) 

16 

(3 to 27) 

FD-2 3.3 to 5.56 2.25 
8 

(2 to 16) 

103 

(31 to 205) 

73 

(25 to 134) 

1.21 

(0.56 to 3.82) 

15 

(5 to 28) 

20 

(7 to 36) 

FD-3 3.6 to 4.8 1.2 
6 

(3 to 14) 

86 

(50 to 192) 

50 

(26 to 87) 

1.03 

(0.51 to 2.25) 

11 

(8 to 24) 

17 

(11 to 34) 

FD-7A 3.9 to 5.25 1.35 
5.5 

(2 to 17) 

75 

(23 to 214) 

122 

(21 to 288) 

2.25 

(0.7 to 5.7) 

12 

(4 to 33) 

16 

(6 to 41) 

(1)Derived from Fr =
Fs

(qt−σv0)
∗ 100% 

(2)Derived from CPT-SPT correlation (Lunne et al. 1997); 

qC
Pa
⁄

N60
= 8.5(1 −

IC

4.6
)  

Note: qc is the “measured cone resistance”;  

qc1N  is the “normalized cone resistance”:    qc1N = qc1/Pa; qc1 = CNqc 
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5.4 METHODOLOGY 

The field tests provide the in situ soil properties that are used to estimate the 

minimum magnitude and peak ground acceleration of the prehistoric earthquake that 

created the newly-discovered sand blow. The current measurements of the source sand 

properties (qc1, (N1)60 and CRR) were corrected for time dependent mechanisms (i.e. 

“aging”) prior to back-calculating the earthquake magnitude and peak ground 

acceleration (see Olson et al. 2005 for a summary of methods to back-calculate 

earthquake magnitudes and peak ground accelerations and uncertainties associated with 

those methods). In this way, the empirical correlations for liquefaction evaluation (e.g. 

the cyclic stress method originally developed by Seed and Idriss 1971) applicable for 

young or freshly deposited soils can be used for the older soil deposits (see Leon et al. 

2005, 2006).  

5.4.1 Accounting for Soil Aging  

While aging is known to change the geotechnical properties of soils over time 

(Baxter and Mitchell 2004; Mitchell and Solymar 1984; Schmertmann 1991), the site-

specific mechanisms and their significance at the Fort Dorchester site is uncertain. 

Therefore, three different independent methods were used to account for aging: 1) the 

methodology of Leon et al. 2005 using aging relations offered by Mesri et al. 1990, 2) the 

methodology of Leon et al. 2005 using aging relations by Kulhawy and Mayne 1990, and 

3) the methodology of Hayati and Andrus 2009. In the Leon et al. 2005 methodology 

(with Mesri et al. 1990 or Kulhawy and Mayne 1990), the aging correction is applied to 

the current measurements of penetration resistance (qc1 or (N1)60) to find the post-

liquefaction penetration resistance; whereas, in the Hayati and Andrus 2009 
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methodology, the aging correction is applied to the current CRR (which is a function of 

the current penetration resistance). Each of these three methods is used separately to 

back-calculate the earthquake magnitudes and peak ground accelerations. Similar results 

from different methods yield greater confidence.  

The relation offered by Mesri et al. 1990 is based on an observed increase in 

penetration resistance after ground densification by blasting, vibrocompaction, and 

dynamic compaction in clean sands and is a function of time, t, the change in relative 

density, ΔDR, and the ratio of the secondary compression index to the compression index, 

Cα/Cc. For the work herein, the post-earthquake tip resistance, qc1 (post) and blow count, 

(N1)60 (post) are obtained using the current penetration resistance and this relation 

[qc1/qc1(post)=(N1)60/(N1)60(post)=(t/tR)CDCα/Cc] where tR= 0.082 yrs, Cα/Cc=0.02 and CD=5.5 

to 7.0 per Leon et al. 2005.  

  The Kulhawy and Mayne 1990 relation is based on collected SPT blow count 

and relative density data as a function of soil particle size for aged fine to medium 

overconsolidated sands from four geologic periods. A correction factor, 

CA=1.2+0.5log(t/100), was proposed to describe the influence of aging (t) on the 

(N1)60/Dr
2 ratio and is used herein to relate the current penetration resistance to the post-

earthquake values of penetration resistance, [qc1/qc1(post)=(N1)60/(N1)60(post)= CA]. 

Note that in previous recent studies using the Leon et al. 2005 method (Gheibi 

and Gassman 2014 and Gheibi and Gassman 2015) the disturbance correction proposed 

by Leon et al. 2005 was used to account for post-liquefaction re-consolidation (primary) 

and densification (or loosening) to obtain “pre-earthquake” data. The disturbance 

correction (i.e. the difference between the post-earthquake (after post-liquefaction re-
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consolidation (primary)) and pre-earthquake (before the earthquake) resistance values) is 

not used herein since the Energy Intensity equation (Pond and Martin 1997) and the 

empirical relations between CRR and in situ measurements are almost exclusively based 

on field data measurements after earthquakes, not prior to earthquakes and thus 

inherently account for disturbance.  

The methodology of Hayati and Andrus 2009 uses an updated liquefaction 

resistance correction factor, KDR, given in Equation 5.1, where t is the time since initial 

deposition or critical disturbance in years, to find CRRk (the deposit resistance-corrected 

CRR) from Equation 5.2. KDR is based on data from over 30 sites in five countries and is 

used to account for the influence of age, cementation and stress history on CRR.  

Two methods were used to account for aging: the methodology of Leon et al. 

2005 and the methodology of Hayati and Andrus 2009. The methodology of Leon et al. 

2005 was used to modify the current measurements of cone penetration tip resistance, 

blow count, and cyclic resistance ratio for the effect of aging. The Hayati and Andrus 

2009 methodology was used to back-calculate the CRR at the time of earthquake.  

 

KDR = 0.13. log(t) + 0.83 (5.1) 

CRRK = CRR. KDR (5.2) 

 

To calculate CRRK, the (N1)60 in Table 5.3 were first modified for the effect of 

fines content to obtain (N1)60cs and then used with the following equation from Idriss and 

Boulanger 2008 to calculate the CRR:  
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CRRM=7.5,σvc
, =1 = exp {

(N1)60cs
14.1

+ (
(N1)60cs
126

)
2

− (
(N1)60cs
23.6

)
3

+ (
(N1)60cs
25.4

)
4

− 2.8} (5.3) 

 

where CRRM=7.5,σʹvc=1  is the equivalent CRR for the reference values of M=7.5 (σʹvc 

=1atm) and (N1)60cs is the equivalent clean-sand number of blow counts. This CRR is 

then used with Equations 5.1 and 5.2 to find CRRK. The Hayati and Andrus 2009 method 

was also used to back-calculate (N1)60 (post), by solving Equation 5.3 for (N1)60cs (= (N1)60 

(post)) when CRRM=7.5,σʹvc=1 = CRRK. 

The source sand at the Fort Dorchester site is about 200,000 years old, and times 

of 3500, 6000 and 10,000 years B.P. were selected to represent possible ages of 

formation of the sand blow. These times were selected based on the work of Talwani et al 

2011, with an age of 10,000 years being an upper bound, and used to obtain the corrected 

values of the source sand properties representative of the time of the earthquake for each 

of the three methods.  

5.4.2 Evaluation of Peak Ground Acceleration 

An estimate of the peak ground acceleration at the surface, amax, was found using 

the following equation for the cyclic stress ratio for a given earthquake (CSRM,σʹvc) given 

by Idriss and Boulanger 2008:  

 

CSRM,σvc′ = CRRM=7.5,σvc′ =1 ∗ MSF ∗ Kσ = ⁡0.65 ∗ rd ∗ (
σv0 ∗ amax
σv0
′ ∗ g

) (5.4) 

 

where σvo is the vertical stress and σʹvo is the vertical effective stress at depth z, MSF is the 

magnitude scaling factor used to consider earthquakes with magnitudes other than 7.5, 
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and rd is the reduction factor that considers the flexibility of soil column. A coefficient of 

0.65 is applied to approximate an average cyclic stress during earthquake shaking. Kσ is 

the overburden correction factor which is a function of the in situ penetration resistance 

((N1)60, or (qc1N)cs). The proposed relations of Kσ, MSF and rd of Idriss and Boulanger 

2008 were used in this study.  

To back-calculate amax using Equation 5.4, CRRM=7.5,σʹvc=1, was found using the 

Idriss and Boulanger 2008 relation between CRRM=7.5,σʹvc=1  and cone penetration test 

results. Note that previous work by Leon et al. 2005 used the relation of Youd and Idriss 

1997. The Idriss and Boulanger 2008 relation was updated to include an expanded case 

history database of liquefaction/no liquefaction sites and adjusted to reflect the number of 

equivalent cycles that had occurred up to the time when liquefaction was triggered for 

cases where liquefaction occurs early in shaking. The relation was also modified to 

account for the effect of non-plastic fines on the liquefaction resistance, thus is a function 

of (qc1N)cs, and is given as follows:  

 

CRRM=7.5,σvc
, =1 = exp {

(qc1N)cs
540

+ (
(qc1N)cs
67

)
2

− (
(qc1N)cs
80

)
3

+ (
(qc1N)cs
114

)
4

− 3} (5.5) 

 

Note that for the calculations of vertical effective stress, a high stand water table 

was assumed at the time of the prehistoric earthquake as shown in Figures 5.3 and 5.4. 

This water level corresponds to the top of the source sand layer assuming complete 

submergence would have been necessary for the occurrence of liquefaction (see Talwani 

et al. 2011 for discussion of prehistoric water table level at the site).  
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5.4.3 Evaluation of Magnitude 

Olson et al. 2005 suggest using a regional magnitude bound relationship and the 

distance from the energy center to the most distal site of liquefaction to estimate 

magnitude; however, for the discovered sand blow herein that has been associated with a 

splay of the Sawmill Branch fault (Talwani et al. 2011), the most distal site of 

liquefaction is unknown. Therefore, an estimate of the minimum earthquake magnitude 

was found using the following relationship between the seismic intensity at the site in 

terms of magnitude (M) and hypocentral distance (Rh) in km with the liquefaction 

susceptibility represented by (N1)60:  

 

M =
2

3
∗ log[1.445 ∗ Rh

2 ∗ (N1)60
6.06] (5.6) 

 

The relation was derived by Hu et al. 2002b based on the energy-stress method of 

Obermeier and Pond 1999. The seismicity associated with the fault (see Figure 5.2 in 

Talwani et al. 2011) suggests a hypocentral distance ranging from four to ten kilometers. 

(N1)60 values were obtained via the Lunne et al. 1997 correlation to CPT data. The 

energy-stress method of Obermeier and Pond 1999 is assumed to be applicable for world-

wide tectonic conditions, but it was also recognized the magnitude could be constrained 

further knowing localized information such as stress drop, focal depth, the degree of 

liquefaction susceptibility on the extent of liquefaction, and the attenuation of bedrock 

shaking.  

Work by Wells and Coppersmith 1994, based on a study of over 148 earthquakes, 

was also used to estimate the earthquake magnitude given the rupture length and rupture 
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area of a slip-type fault such as that found near Fort Dorchester. The earthquake 

magnitude (M) is related to the subsurface rupture length (RLD):  

 

M = 4.38 + 1.49. log(RLD) (5.7) 

 

and the fault rupture area (RA): 

 

M = 4.07 + 0.98. log(RA) (5.8) 

 

Note there is no difference between intraplate settings (compressional) or plate 

boundary (compressional and or extensional) settings in these parameters. Wells and 

Coppersmith 1994 state: "Separating the data according to extensional and compressional 

tectonic environments neither provides statistically different results nor improves the 

statistical significance of the regressions." 

5.5 RESULTS 

5.5.1 Age-Corrected In-Situ Data 

The average qc1 (post) and (N1)60 (post) for the estimated sand blow ages of 3500, 

6000 and 10,000 years found using the data (qc1N and (N1)60) in Table 5.3 and the Leon et 

al. 2005 methodology (Mesri et al. 1990 and Kulhawy and Mayne 1990 relations) at the 

four CPT locations are summarized in Table 5.4. The results show that the age-corrected 

values of tip resistance are less than current measurements, thus showing the increase in 

soil resistance with time. Furthermore, the age-corrected qc1 and (N1)60 using Mesri et al. 

1990 are more than 50% lower than the corresponding values from Kulhawy and Mayne 
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1990. Also, there is a negligible effect on the values of qc1(post) and (N1)60(post) for the age 

of the sand blow ranging from 3500 to 10,000 years. 

 

Table 5.4 Post-earthquake values of qc1 and (N1)60 and CRR for the source sand layer. 
 

CPT No. 
Sand blow 

Age (yrs) 

Correction for Age (Post-Earthquake) 

Mesri et al. (1990) Kulhawy and Mayne (1990) 
Hayati and Andrus 

(2009) 

qc1 (MPa) (N1)60 CRRa
*
 (CPT) qc1 (MPa) (N1)60 CRRa

*
 (CPT) CRRk

+
 (SPT) CRRk

°
 (CPT) 

FD-1 

3500 2 4 0.07 7 13 0.15 0.18 0.16 

6000 2 4 0.07 7 13 0.15 0.17 0.15 

10000 2 4 0.07 7 13 0.15 0.17 0.15 

FD-2 

3500 3 5 0.07 8 15 0.16 0.17 0.15 

6000 3 5 0.07 8 15 0.16 0.18 0.15 

10000 2 5 0.07 8 15 0.15 0.18 0.14 

FD-3 

3500 2 4 0.07 7 13 0.13 0.19 0.13 

6000 2 4 0.07 7 13 0.13 0.18 0.13 

10000 2 4 0.07 7 13 0.13 0.19 0.12 

FD-7A 

3500 2 4 0.06 6 13 0.12 0.14 0.11 

6000 2 4 0.06 6 13 0.12 0.14 0.11 

10000 2 4 0.06 6 12 0.12 0.14 0.10 

* Cyclic resistance ratio obtained from CPT results and Leon et al. (2005) methodology. 
+ Cyclic resistance ratio obtained from SPT results and Hayati and Andrus (2009) methodology. 
° Cyclic resistance ratio obtained from CPT results and Hayati and Andrus (2009) methodology. 

 

The post-earthquake CRR values are also shown in Table 4. CRRa (CPT) was 

obtained using Equation 5.5 with the post-earthquake (age-corrected) values of tip 

resistance obtained from both the Mesri et al. 1990 and Kulhawy and Mayne 1990 age 

relations. CRRk (CPT) was obtained using Equation 5.5 with the current measured values of 

tip resistance and then corrected for age using Equation 2. Similarly CRRk (SPT) was 

obtained using Equation 5.3 with the current measured SPT values and then corrected for 

age using Equation 5.2. As shown, the post-earthquake CRR values calculated using CPT 
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tip resistance and the Hayati and Andrus 2009 age relation (CRRk (CPT)) from Equation 5.2 

are in a good agreement with those obtained using Kulhawy and Mayne 1990 (CRRa 

(CPT)), but are not in agreement with those obtained using Mesri et al. 1990.   

  5.5.2 Accelerations 

The amax found using Equation 5.4 and the CRR values in Table 5.4 for each of 

the three aging relations are summarized for earthquake magnitudes M=5, M=5.6, M=6 

and M=7 in Table 5.5. For the larger earthquake magnitudes, as expected, less 

acceleration is required for liquefaction initiation. For example, using the Kulhawy and 

Mayne 1990 age relation for FD-1 results in a peak ground acceleration of 0.23g for M=7 

compared to 0.38g for M=5. Also, for a given earthquake magnitude at each CPT 

location, acceleration values obtained using the aging relations offered by Hayati and 

Andrus 2009 and Kulhawy and Mayne 1990 are in a good agreement and are about twice 

those obtained from the Mesri et al. 1990 relation. Similar to the trends shown for CRR in 

Table 5.4, amax decreases as the age of the sand blow increases. However, for the selected 

range of sand blow ages (3500 to 10,000 years B.P.), the decrease is small (0.01g). 

Note that the Youd and Idriss 1997 method that was used in Leon et al. 2005 

results in higher values of acceleration than the Idriss and Boulanger 2008 method used 

herein. The increase is greater for lower magnitudes. As was shown for the Gapway and 

Sampit sites in the SCCP (Gheibi and Gassman 2014), the accelerations found from the 

Idriss and Boulanger 2008 method are about 50% lower for M=5 and 23% lower for 

M=7.5 than found using Youd and Idriss 1997. 
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Table 5.5. Peak ground acceleration for source sand layer. 

 
L

o
ca

ti
o
n

 

Sand 

blow 

Age 

(yrs) 

Peak Ground Acceleration (g) 

M=5 M=5.6 M=6 M=7 

Mesri 

et al. 

(1990) 

Kulhawy 

and 

Mayne 

(1990) 

Hayati 

and 

Andrus 

(2009) 

Mesri 

et al. 

(1990) 

Kulhawy 

and 

Mayne 

(1990) 

Hayati 

and 

Andrus 

(2009) 

Mesri 

et al. 

(1990) 

Kulhawy 

and 

Mayne 

(1990) 

Hayati 

and 

Andrus 

(2009) 

Mesri 

et al. 

(1990) 

Kulhawy 

and 

Mayne 

(1990) 

Hayati 

and 

Andrus 

(2009) 

FD-1 

3500 0.18 0.38 0.40 0.16 0.34 0.36 0.15 0.31 0.33 0.11 0.23 0.25 

6000 0.18 0.38 0.40 0.16 0.34 0.36 0.14 0.30 0.32 0.11 0.23 0.24 

10000 0.17 0.37 0.40 0.16 0.33 0.36 0.14 0.30 0.32 0.11 0.23 0.24 

FD-2 

3500 0.15 0.38 0.36 0.14 0.34 0.32 0.12 0.31 0.29 0.09 0.23 0.22 

6000 0.15 0.38 0.35 0.14 0.34 0.32 0.12 0.30 0.28 0.09 0.23 0.21 

10000 0.15 0.37 0.34 0.13 0.33 0.31 0.12 0.30 0.28 0.09 0.22 0.21 

FD-3 

3500 0.13 0.26 0.25 0.12 0.24 0.23 0.10 0.21 0.20 0.08 0.16 0.15 

6000 0.13 0.26 0.25 0.12 0.24 0.22 0.10 0.21 0.20 0.08 0.16 0.15 

10000 0.12 0.26 0.24 0.11 0.23 0.22 0.10 0.21 0.19 0.08 0.16 0.15 

FD-7 

3500 0.14 0.27 0.24 0.13 0.24 0.22 0.11 0.22 0.19 0.09 0.16 0.15 

6000 0.14 0.27 0.24 0.13 0.24 0.21 0.11 0.21 0.19 0.08 0.16 0.14 

10000 0.14 0.26 0.23 0.12 0.24 0.21 0.11 0.21 0.19 0.08 0.16 0.14 

 

5.5.3 Earthquake Magnitude 

The estimated minimum magnitudes obtained from the Energy Stress method are 

shown in Table 5.6 for a range of hypocentral distances from 4 km to 10 km. The 

magnitudes for the Energy Stress Method (Equation 6) range from 4.0 to 4.8,  5.5 to 6.2, 

and  5.1 to 6.1 using the Mesri et al. 1990, Kulhawy and Mayne 1990, and Hayati and 

Andrus 2009 relations for age, respectively. These values were found using the age 

corrected (N1)60(post) in Table 5.4 for a sand blow age of 3500 years. For a sand blow age 

of 6000 or 10,000 years, the magnitudes reduce by up to 0.1 and 0.2 units, respectively. 

In general, the magnitudes found using the Mesri et al. 1990 relation for age are about 1 

to 1.6 units lower than those found using the Kulhawy and Mayne 1990 and Hayati and 

Andrus 2009 methods which are in good agreement (Hayati and Andrus 2009 results are 

up to 0.5 units lower than Kulhawy and Mayne 1990).  
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Table 5.6 Earthquake Magnitude (M) for the age of 3500 years B.P. 

 

L
o

ca
ti

o
n

 Energy Stress Method 

Mesri et al. (1990) 
Kulhawy and Mayne 

(1990) 

Hayati and Andrus 

(2009) 

Rh=4 

km 

Rh=6 

km 

Rh=8 

km 

Rh=10 

km 

Rh=4 

km 

Rh=6 

km 

Rh=8 

km 

Rh=10 

km 

Rh=4 

km 

Rh=6 

km 

Rh=8 

km 

Rh=10 

km 

FD-1 4.3 4.5 4.7 4.8 5.6 5.9 6.0 6.2 5.6 5.8 6.0 6.1 

FD-2 4.1 4.3 4.5 4.6 5.7 5.9 6.1 6.2 5.2 5.4 5.6 5.7 

FD-3 4.2 4.4 4.6 4.7 5.6 5.9 6.0 6.2 5.4 5.6 5.8 5.9 

FD-7A 4.0 4.2 4.4 4.5 5.5 5.7 5.9 6.0 5.1 5.3 5.5 5.6 

 

Note for the Energy Stress Method: 1) the age of the sand blow (a difference of 

2500 or 6500 yrs) has a negligible effect (0.l to 0.2 unit) on the back-calculated 

magnitude and 2) the Rh (a difference of 6 km for depths of 4 km to 10 km) causes a 

maximum 0.6 units change. Also, consideration must be given to the fact that analyses 

performed herein use (N1)60 values that have been derived from CPT data via Lunne et al. 

1997.  

Talwani et al. 2011 found the earthquake to have occurred on a splay of the 

Sawmill Branch fault with a seismological depth range of ~6 km i.e., a maximum rupture 

area of ~36 km2”. Thus, the Wells and Coppersmith 1994 method using the rupture 

length and rupture area estimated to be 6 km and 36 km2 respectively, correlates to an 

estimated magnitude of 5.6. This result is independent of the in-situ soil properties and 

disconnected from the aging factor.  

For a range of magnitudes from M=5.1 to M=6.2 (based on the good agreement 

with Kulhawy and Mayne 1990 and Hayati and Andrus 2009 in Tables 5.5 and 5.6), it 

appears that amax is constrained from about 0.19 to 0.40 g. Furthermore, using the 

estimated earthquake magnitude of 5.6 determined from Wells and Coppersmith 1994, 

amax ranges from 0.21 to 0.36 g.  
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5.6 SUMMARY AND CONCLUSIONS 

Field investigations using cone penetration tests with pore pressure 

measurements, vibracore logs, a shallow trench, and a piezometer have been performed at 

the Fort Dorchester site. The cone penetration test results and the vibracore logs were 

used to delineate the soil stratigraphy and identify the soils that are most susceptible to 

liquefaction. The thickness of the liquefiable sand layer was found to range from 1.2 to 

3.1 m with the top of the layer located 2.3 to 3.9 m below the ground surface. Consistent 

with the findings at four paleoliquefaction sites in the SCCP from Hu et al. 2002a, b, the 

geotechnical engineering properties of the liquefiable sand at the Fort Dorchester site 

indicate that it was susceptible to prehistoric liquefaction with a water table at the top of 

the source sand layer.  

The accelerations found per Idriss and Boulanger 2008 using the in situ 

geotechnical data with the Mesri et al. 1990 relation for age are about one-half of the 

values determined using the Kulhawy and Mayne 1990 or Hayati and Andrus 2009 

relations for age. The magnitudes determined using the Energy Stress Method and the 

three relations for age yield a range from 4.0 to 6.2; however, a range of 5.1 to 6.2 is 

more likely given the agreement with the results found using the Kulhawy and Mayne 

1990 and Hayati and Andrus 2009 relations. When the size of the fault is considered via 

Wells and Coppersmith 1994, an approach independent of the in-situ soil properties, the 

maximum magnitude is 5.6 and the corresponding peak ground acceleration ranges from 

0.21 to 0.36 g. 
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CHAPTER 6 

 

USING REGRESSION MODEL TO PREDICT CYCLIC RESISTANCE RATIO AT 

SOUTH CAROLINA COASTAL PLAIN (SCCP)3 

                                                           
3 Gheibi, E., Gassman, S. L., Tavakoli, A. (2014). Advanced Analytics (distributer), Paper, DOI: 

10.13140/2.1.4893.4081. Reprinted here with permission of publisher. 
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ABSTRACT 

Seismically-induced liquefaction is one of the most hazardous geotechnical phenomena 

from earthquakes that can cause loss of life and devastating damages to infrastructures. In 

1964, a 7.5 Richter magnitude earthquake in Nigata, Japan destroyed numerous buildings 

and structures and initiated studies to understand soil liquefaction. One major outcome of 

these studies was the development of correlations that are used to determine liquefaction 

resistance of soil deposits from in-situ soil indices. These relations are based on Holocene 

soils (<10,000 years old) while the sand deposits encountered in the South Carolina 

Coastal Plain (SCCP) are older than 100,000 years. In-situ and geotechnical laboratory 

data that have been obtained in the vicinity of sand blows which date back to 6000 years 

ago at Fort Dorchester, Sampit, Gapway, Hollywood and Four Hole Swamp sites in the 

SCCP have been used with methodology that considers the effect of aging on the 

liquefaction potential of sands to back analyze the cyclic resistance ratio at the time of the 

prehistoric earthquake. For this paper, descriptive statistics, including frequency 

distribution for categorical variables and summary statistics for continuous variables, was 

carried out using this data. Statistical analyses using regression models were performed 

for selected variables on the calculated values of cyclic resistance ratio (dependent 

variables). SAS ® 9.4 was used to analyze the data. The main finding is the significant 

correlation between equivalent clean sand tip resistance and the cyclic resistance ratio at 

the time of earthquake.  

6.1 INTRODUCTION 

The South Carolina Coastal Plain (SCCP) experiences infrequent earthquakes and 

paleoliquefaction analysis plays an important role in studying the paleoseismicity of this 
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region. Studies performed by Talwani and Schaeffer 2001, show that at least seven, large, 

prehistoric earthquakes have occurred within the last 6000 years in the SCCP with an 

average occurrence rate, based on the three most recent events, of about 500 years. Hu et 

al. 2002a and 2002b, used site-specific geotechnical data (penetration resistance and 

shear wave velocity) and back analysed the earthquake magnitude, M, and peak ground 

acceleration, amax, at four sites in the South Carolina Coastal Plain. Back analyses were 

based on the empirical correlations presented in Youd and Idriss 1997. These relations 

are based on the studies of recent earthquakes in Japan, China and the west coast region 

of the U.S. where the soil deposits are of Holocene age (<10,000 years old). Leon et al. 

2005, developed a methodology that considered the effect of age in soil deposits and back 

calculated magnitudes, cyclic resistance ratio, CRR, and peak ground accelerations for 

the sand deposits in the SCCP that are older than 100,000 years. Neglecting the effect of 

aging resulted in a 60% underestimation of CRR (Leon et al. 2006). 

Gheibi and Gassman 2014, used the Idriss and Boulanger 2008, methodology to 

back calculate the magnitude, maximum acceleration, and CRR at the Sampit and 

Gapway sites and showed that using the newer method reduces the acceleration values 

about 50% for M=5 and 23% for M=7.5 for the Gapway and Sampit sites when compared 

to using Seed’s original method.  

Empirical liquefaction potential assessment correlations are developed based on 

analyzing experimental studies and case studies. Running statistical analyses on the 

smaller liquefaction data sets leads to extend meaningful correlations that can be used as 

a larger data base to predict liquefaction at the sites where complete sets of data are not 

available. Therefore, the purpose of this paper is to perform regression analysis on the 
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current measurements of field test data (CPT tip resistance values) to predict the cyclic 

resistance ratio of the soil at the time of prehistoric earthquake.  

6.2 SITE STUDIED 

Given the importance of evaluating liquefaction potential in the SCCP, in-situ and 

geotechnical laboratory tests have performed in the vicinity of sand blows which date 

back to 6000 years ago at the five sites of Fort Dorchester, Sampit, Gapway, Hollywood 

and Four Hole Swamp. Cone Penetration Tests, CPT, and Standard Penetration Tests, 

SPT, were carried out at three to four test locations at each site. Figure 6.1 indicates the 

location of these five sites. 

 

 
 

Figure 6.1 Locations of paleoliquefaction features in South 

Carolina Coastal Plain. 
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The in-situ data used in this study were obtained from CPT and SPT performed at 

the site. The geotechnical laboratory tests were also performed on the samples obtained 

from SPT split spoon sampler to characterize the soil and obtain the fines content. The 

soil profile was obtained using the field and laboratory test results.  

The source sand layer is the layer most prone to liquefaction and was determined 

using the interpretation of SPT blow counts, CPT tip resistance and laboratory test 

results. Two scenarios were considered for the depth of source sand layer at Four Hole 

Swamp. In the first case (A) the source sand layer was assumed to be deeper than the 

other case (B). In this study, CPT tip resistance data were analysed to calculate the CRR. 

Table 6.1 indicates the average value of cone penetration tip resistance in the source sand 

layer at each test location. 

Talwani and Schaeffer 2001 found the paleoliquefaction features in freshly cut 

drainage ditches and described the calibrated ages for the sand blow formations range 

from 500 to 11,000 years before present and have been associated with liquefaction 

episodes in SCCP. Ages of sand deposits based on these episodes at all test locations are 

categorized to four scenarios and are presented in Table 6.2. 

6.3 METHODOLOGY 

The methodology of Leon et al., 2005, was used to obtain the cyclic resistance 

ratio at the time of earthquake. In this method, empirical correlations for liquefaction 

evaluation which are applicable for young or freshly deposited soils can be used for the 

older soil deposits if the age corrected parameters (cone penetration tip resistance, qc1, at 

the time of earthquake) are applied.  
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Table 6.1 Average values of current tip 

resistance in the source sand layer. 

 

Test Location qc (Mpa) 

FD-1 5 

FD-2 11.2 

FD-3 11.3 

FD-7 12.8 

SAM-1 6.8 

SAM-2 6 

SAM-3 7.7 

GAP-1 3.8 

GAP-2 6.6 

GAP-3 2.4 

HWD-4 6.4 

HWD-5 5.5 

HWD-6 6.9 

FHS-1 (A) 3.6 

FHS-2 (A) 6.6 

FHS-3 (A) 4.9 

FHS-1 (B) 5.7 

FHS-2 (B) 9.9 

FHS-3 (B) 6.8 

 

Post and pre-earthquake values of tip resistance (qc1 (post), qc1 (pre)) for the discussed 

ages and episodes are obtained using two different approaches. Approach 1 is based on 

the relations offered by Mesri et al. 1990, for both the age and disturbance correction and 

Approach 2 is based on work by Kulhawy and Mayne 1990, for the age correction and 

Seed, 1988, for the disturbance correction. Change in relative density of the soil (∆DR) is 

considered to be 5% and 10% between the pre- (qc1 (pre)) and post- (qc1 (post)) earthquake 

state.  

Pre-earthquake values of tip resistance at depth of soil are corrected for the effect 

of fines content in soil using Equation 6.1 and then are applied in Equation 6.2 to obtain 

CRR using the Idriss and Boulanger 2008, approach.  
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Table 6.2 Age of sand blows at each test location 

(adapted from Talwani and Schaeffer 2001). 

 

Test 

Location 

t (years before present) 

First 

Scenario 

Second 

Scenario 

Third 

Scenario 

Forth 

Scenario 

FD-1 3,500 5,000 − − 

FD-2 3,500 5,000 − − 

FD-3 3,500 5,000 − − 

FD-7 3,500 5,000 − − 

SAM-1 1,021 − − − 

SAM-2 450,000 − − − 

SAM-3 450,000 − − − 

GAP-1 5,038 − − − 

GAP-2 5,038 − − − 

GAP-3 5,038 − − − 

HWD-4 546 1,021 3,548 5,038 

HWD-5 546 1,021 3,548 5,038 

HWD-6 546 1,021 3,548 5,038 

FHS-1 1,660 − − − 

FHS-2 1,660 − − − 

FHS-3 1,660 − − − 

 

(qc1N)cs = qc1N + ∆qc1N⁡,⁡⁡⁡⁡∆qc1N = (5.4 +
qC1N
16

) ∗ exp{1.63 +
9.7

FC + 0.01
− (

15.7

FC + 0.01
)
2

}⁡ (6.1) 

𝐶𝑅𝑅𝑀=7.5,𝜎𝑣𝑐
, =1 = 𝑒𝑥𝑝 {

(𝑞𝑐1𝑁)𝑐𝑠
540

+ (
(𝑞𝑐1𝑁)𝑐𝑠
67

)
2

− (
(𝑞𝑐1𝑁)𝑐𝑠
80

)
3

+ (
(𝑞𝑐1𝑁)𝑐𝑠
114

)
4

− 3}⁡ (6.2) 

 

where FC is the percent of fines content in soil, qC1N is the normalized value of tip 

resistance and (qC1N)CS  is the equivalent clean sand value of tip resistance.  

6.4 DATA ANALYSIS 

Statistical analyses were used to organize and summarize the data to support the 

research methodology. Proc MEANS and FREQ were used to describe the data. Proc 

CORR and REG were used to examine the linear relationship of predicted variables (age 

of earthquake and fines of content) with outcomes (cyclic resistance ratio at the time of 

earthquake with two approaches (Approach 1 and 2) and different percentage of change 
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in relative density (5 and 10). Pearson correlation, parameter estimates, and R-Square 

were used to determine the significant and strength effect among independent variable 

with outcomes.  

6.5 RESULTS 

Table 6.3a shows the frequency distribution for the age of earthquake and Table 

6.3b for the fines content. Fifty percent of obtained soil samples in the SCCP have fines 

content in the range of 5-12%. The percentage of age of earthquake for each category is 

between 9% to 15 %. The precision reported herein does not represent the experimental 

uncertainty. 

 

Table 6.3 Frequency distribution of a. Age and b. Fines content. 
 

a. Age of Earthquake 

Age Frequency Percent 
Cumulative 

Frequency 

Cumulative 

Percent 

546 191 8.89 191 8.89 

1021 365 16.98 556 25.87 

1660 292 13.59 848 39.46 

3500 249 11.59 1097 51.05 

3548 191 8.89 1288 59.93 

5000 249 11.59 1537 71.52 

5038 279 12.98 1816 84.50 

450000 333 15.50 2149 100.00 

 

b. Fines Content Categories 

Fines Content 

Categories 
Frequency Percent 

Cumulative 

Frequency 

Cumulative 

Percent 

0-5 462 21.50 462 21.50 

5-12 1077 50.12 1539 71.61 

12-35 607 28.25 2146 99.86 

Greater than 35 3 0.14 2149 100.00 
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Table 6.4 shows the mean, standard deviation, and MIN and MAX of variables. 

The results show the overall mean of fines content for the obtained soil samples from all 

the test locations is 9.2. The mean of the current cyclic resistance ratio is 0.17 and is 

greater than the corresponding values at the time of earthquake for both approaches 

which is because of the increase in soil resistance against liquefaction with time. 

 

Table 6.4 N, mean, standard deviation, minimum, and maximum for variables. 

 

Variables N Mean Std Dev Min Max 

Fines content 2149 9.2 4.61 2 38 

Equivalent clean sand tip resistance 2149 105 36.5 18 222 

Current cyclic resistance ratio 2107 0.17 0.09 0.05 0.57 

Cyclic resistance ratio at the time of earthquake, Approach 1, 5% 2149 0.09 0.03 0.05 0.31 

Cyclic resistance ratio at the time of earthquake, Approach 1, 10% 2149 0.07 0.01 0.05 0.15 

Cyclic resistance ratio at the time of earthquake, Approach 2, 5% 2149 0.12 0.05 0.05 0.51 

Cyclic resistance ratio at the time of earthquake, Approach 2, 10% 2149 0.12 0.05 0.05 0.47 

 

Table 6.5 presents the mean, standard deviation, and minimum and maximum of 

variables by fines content. Results show that for a given range of fines content, Approach 

1 leads to lower values of CRR compared to the Approach 2. The mean of equivalent 

clean sand tip resistance are 95, 114, 99, 131 for 0-5, 5-12, 12-35, and greater than 35 of 

fines content levels; respectively. The mean of the cyclic resistance ratio at the time of 

the earthquake were different with levels of fines of content. 

Table 6.6 indicates Pearson correlation among variables. For each variable, three 

numbers are shown: the first row indicates bivariate correlation, the second row is P-

value and the last row shows the number of observations. The results show the positive 

linear relationship between (qc1N)cs and CRR at the time of earthquake for all cases is 

greater than 0.75 which is considered to be strong.  
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Table 6.5 N, means, standard deviation, minimum, and maximum for variables by fines 

content levels. 

 

Fines 

Content 
Label N Mean 

Std 

Dev 
Min Max 

0-5 

-Equivalent clean sand tip resistance 

-Current cyclic resistance ratio 

-Cyclic resistance ratio at the time of earthquake, Approach 1, 5% 

-Cyclic resistance ratio at the time of earthquake, Approach 1, 10% 

-Cyclic resistance ratio at the time of earthquake, Approach 2, 5% 

-Cyclic resistance ratio at the time of earthquake, Approach 2, 10% 

462 

462 

462 

462 

462 

462 

95 

0.15 

0.07 

0.06 

0.11 

0.10 

33.77 

0.07 

0.02 

0.01 

0.03 

0.03 

18 

0.05 

0.05 

0.05 

0.05 

0.05 

174 

0.45 

0.16 

0.10 

0.22 

0.21 

5-12 

-Equivalent clean sand tip resistance 

-Current cyclic resistance ratio 

-Cyclic resistance ratio at the time of earthquake, Approach 1, 5% 

-Cyclic resistance ratio at the time of earthquake, Approach 1, 10% 

-Cyclic resistance ratio at the time of earthquake, Approach 2, 5% 

-Cyclic resistance ratio at the time of earthquake, Approach 2, 10% 

1077 

1037 

1077 

1077 

1077 

1077 

114 

0.18 

0.10 

0.07 

0.13 

0.13 

38.18 

0.09 

0.04 

0.02 

0.06 

0.05 

26 

0.06 

0.05 

0.05 

0.06 

0.06 

222 

0.57 

0.31 

0.15 

0.51 

0.47 

12-35 

-Equivalent clean sand tip resistance 

-Current cyclic resistance ratio 

-Cyclic resistance ratio at the time of earthquake, Approach 1, 5% 

-Cyclic resistance ratio at the time of earthquake, Approach 1, 10% 

-Cyclic resistance ratio at the time of earthquake, Approach 2, 5% 

-Cyclic resistance ratio at the time of earthquake, Approach 2, 10% 

607 

605 

607 

607 

607 

607 

99 

0.16 

0.09 

0.07 

0.12 

0.11 

31.73 

0.09 

0.02 

0.01 

0.04 

0.04 

39 

0.07 

0.06 

0.06 

0.06 

0.06 

193 

0.56 

0.19 

0.12 

0.29 

0.28 

Greater 

than 35 

-Equivalent clean sand tip resistance 

-Current cyclic resistance ratio 

-Cyclic resistance ratio at the time of earthquake, Approach 1, 5% 

-Cyclic resistance ratio at the time of earthquake, Approach 1, 10% 

-Cyclic resistance ratio at the time of earthquake, Approach 2, 5% 

-Cyclic resistance ratio at the time of earthquake, Approach 2, 10% 

3 

3 

3 

3 

3 

3 

131 

0.23 

0.13 

0.10 

0.16 

0.16 

28.52 

0.10 

0.03 

0.01 

0.04 

0.04 

105 

0.15 

0.11 

0.09 

0.12 

0.12 

162 

0.34 

0.16 

0.11 

0.21 

0.20 

 

Table 6.7 presents the results from the multiple regression models for equivalent 

clean sand tip resistance on cyclic resistance ratio at the time of earthquake for 

Approaches 1 and 2 and different percentages of change in relative density. Each model 

includes the age of the earthquake and the fines content as predictors. The results indicate 

there is significant relation between the predictors and outcome variable (CRR at time of 

earthquake). Parameter estimate in Table 6.7 is the slope between the predictors and 

outcome and shows how the CRR at time of earthquake will change by one unit of 

increase in the predictors.  
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Table 6.6 Pearson Correlation. 

  

Pearson Correlation Coefficients 

Prob > |r| under H0: Rho=0 

Number of Observations 

 FC qc1Ncs CRRc CRR15 CRR110 CRR25 CRR210 

FC 

Fines content 

1.00000 

 

 

0.19871 

<.0001 

2149 

0.17426 

<.0001 

2107 

0.43048 

<.0001 

2149 

0.54077 

<.0001 

2149 

0.25273 

<.0001 

2149 

0.24724 

<.0001 

2149 

qc1Ncs 

Equivalent clean sand tip 

resistance 

 

1.00000 

 

 

0.92467 

<.0001 

2107 

0.77656 

<.0001 

2149 

0.74988 

<.0001 

2149 

0.94260 

<.0001 

2149 

0.95095 

<.0001 

2149 

CRRc 

Current cyclic resistance ratio 
  

1.00000 

 

 

0.72320 

<.0001 

2107 

0.68974 

<.0001 

2107 

0.96634 

<.0001 

2107 

0.96726 

<.0001 

2107 

CRR15 

Cyclic resistance ratio at the time 

of earthquake, Approach 1, 5% 

   

1.00000 

 

 

0.98807 

<.0001 

2149 

0.86005 

<.0001 

2149 

0.85102 

<.0001 

2149 

CRR110 

Cyclic resistance ratio at the time 

of earthquake, Approach 1, 10% 

    

1.00000 

 

 

0.82872 

<.0001 

2149 

0.82067 

<.0001 

2149 

CRR25 

Cyclic resistance ratio at the time 

of earthquake, Approach 2, 5% 

     

1.00000 

 

 

0.99947 

<.0001 

2149 

CRR210 

Cyclic resistance ratio at the time 

of earthquake, Approach 2, 10% 

      1.00 

 

The slopes are different for Approach 1 with different percentages; however, the 

slopes are similar for Approach 2 with different percentages. 84 % variability of cyclic 

resistance is explained by equivalent clean sand tip resistance, age of earthquake, and 

fines content in Approach 1 for both 5 and 10 %. The results also reveal that 91 % 

variability of cyclic resistance is explained by equivalent clean sand tip resistance, age of 

earthquake, and fines content with Approach 2 for both 5 and 10 %.   

Research is still on going to find the correlation between equivalent clean sand 

values of tip resistance and the cyclic resistance ratio at the time of earthquake.  
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Table 6.7 Multiple regression models for equivalent clean sand tip resistance on cyclic 

resistance ratio at the time of earthquake for Approach 1 and 2 and different percentages 

of change in relative density. 

 

Variable DF 
Parameter 

Estimate 

Standard 

Error 
t Value Pr > |t| 

Standardized 

Estimate 

Squared 

Semi-partial 

Corr Type II 

Squared 

Partial 

Corr Type II 

Intercept 1 0.02405 0.00101 23.87 <.0001 0 . . 

Age of earthquake 1 -8.88454E-8 1.943581E-9 -45.71 <.0001 -0.45038 0.15669 0.49346 

Fines content 1 0.00047404 0.00006966 6.80 <.0001 0.06840 0.00347 0.02113 

Equivalent clean 

sand tip resistance 
1 0.00066376 0.00000777 85.39 <.0001 0.75785 0.54672 0.77267 

R2 = .84 Approach 1, 5% 

Variable DF 
Parameter 

Estimate 

Standard 

Error 
t Value Pr > |t| 

Standardized 

Estimate 

Squared 

Semi-partial 

Corr Type II 

Squared 

Partial 

Corr Type II 

Intercept 1 0.03582 0.00046647 76.79 <.0001 0 . . 

Age of earthquake 1 -3.59756E-8 8.99826E-10 -39.98 <.0001 -0.39193 0.11866 0.42700 

Fines content 1 0.00070031 0.00003225 21.71 <.0001 0.21718 0.03500 0.18021 

Equivalent clean 

sand tip resistance 
1 0.00028620 0.00000360 79.52 <.0001 0.70227 0.46946 0.74672 

R2 = .84 Approach 1, 10%  

Variable DF 
Parameter 

Estimate 

Standard 

Error 
t Value Pr > |t| 

Standardized 

Estimate 

Squared 

Semi-partial 

Corr Type II 

Squared 

Partial 

Corr Type II 

Intercept 1 -0.01151 0.00123 -9.33 <.0001 0 . . 

Age of earthquake 1 -1.99549E-8 2.377846E-9 -8.39 <.0001 -0.06637 0.00340 0.03179 

Fines content 1 0.00037841 0.00008523 4.44 <.0001 0.03583 0.00095264 0.00911 

Equivalent clean 

sand tip resistance 
1 0.00125 0.00000951 131.19 <.0001 0.93472 0.83168 0.88918 

R2 = .90 Approach 2, 5% 

Variable DF 
Parameter 

Estimate 

Standard 

Error 
t Value Pr > |t| 

Standardized 

Estimate 

Squared 

Semi-partial 

Corr Type II 

Squared 

Partial 

Corr Type II 

Intercept 1 -0.00884 0.00109 -8.10 <.0001 0 . . 

Age of earthquake 1 -1.3358E-8 2.107121E-9 -6.34 <.0001 -0.04684 0.00169 0.01839 

Fines content 1 0.00037957 0.00007552 5.03 <.0001 0.03789 0.00107 0.01164 

Equivalent clean 

sand tip resistance 
1 0.00119 0.00000843 141.66 <.0001 0.94289 0.84628 0.90343 

R2 = .91 Approach 2, 10% 
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6.6 CONCLUSIONS 

PROC REG in SAS was used to examine the relationship between equivalent 

clean sand tip resistance and cyclic resistance ratio at the time of earthquake with two 

approaches and two percentages of change in relative density. Each model included the 

age of the earthquake and the fines content. The results showed the bivariate correlations 

between equivalent clean sand tip resistance and cyclic resistance ratio at the time of 

earthquake using Approach 1 for 5 and 10% were 0.78 and 0.75, respectively. Bivariate 

correlations for Approach 2 were 0.94 and 0.95 for 5 and 10% of change in relative 

density. The results also revealed that an increase in predictor variable values (fines 

content, age of earthquake and equivalent clean sand tip resistance) produced different 

changes in CRR at the time of the earthquake for both 5 and 10% in Approach 1; whereas 

similar changes were produced for CRR for 5 and 10%  in Approach 2. Variability of 

cyclic resistance ratio were explained 84% and 91% by equivalent clean sand tip 

resistance, age of earthquake, and fines content in Approaches 1 and 2, respectively.  

  



www.manaraa.com

110 

SAS SYNTAX 

proc format; 

value fcgf 1=" 0-5" 

         2=" 5-12" 

         3="12-35" 

            4="greater than 35”; 

data one; 

set  crr.crr14; 

 

if 0<fc =<5 then fcg=1; 

else if 5<fc =<12 then fcg=2; 

else if 12<fc =<35 then fcg=3; 

else if 35<fc<100 then fcg=4; 

 

lABEL 

site =" Site" 

age = " age of earthquake" 

FC  =" fines content" 

FCg  =" fines content categories" 

qc1ncs  =" equivalent clean sand tip resistance" 

CRRc ="current cyclic resistance ratio" 

CRR15 ="cyclic resistance ratio at the time of earthquake, method 1, 5%"  

CRR110 ="cyclic resistance ratio at the time of earthquake, method 1, 10%"  

CRR25 ="cyclic resistance ratio at the time of earthquake, method 2, 5%"  

CRR210 ="cyclic resistance ratio at the time of earthquake, method 2, 10%"  

; 

format fcg fcgf.; 

run; 

 

ods rtf; 

ods listing close; 

proc freq data =ONE; 

tables site age fcg; 

title ' Frequency tables/'; 

run;  

 

proc means data=one maxdec=2; 

     var fc -- crr210; 

     TITLE1 'Mean'; 

run; 

proc means data=one maxdec=2; 

    class fcg;  

     var qc1ncs -- crr210; 

     TITLE1 'Mean'; 

      run; 
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proc CORR Data=one ; 

     var fc -- crr210; 

     TITLE1 'CORREALTION'; 

run; 

ods rtf close; 

ods listing; 

quit; 

run; 

ods rtf; 

ods listing close; 

 

%macro reg  (d,i,t); 

proc reg data=one; 

      model &d = &i / stb pcorr2 scorr2; 

title ' Regression model' &t; 

   %mend reg; 

 %reg (crr15,age fc qc1ncs, cyclic resistance ratio at the time of earthquake method 1 5% 

); 

%reg (crr110,age fc qc1ncs, cyclic resistance ratio at the time of earthquake method 1 

10% ); 

%reg (crr25,age fc qc1ncs, cyclic resistance ratio at the time of earthquake method 2 5% 

); 

%reg (crr210,age fc qc1ncs, cyclic resistance ratio at the time of earthquake method 2 

10% ); 

run; 

ods rtf close; 

ods listing; 

quit; 

run; 
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CHAPTER 7 

 

APPLICATION OF GMPES TO ESTIMATE THE AMAX-M OF PREHISTORIC 

EARTHQUAKES FOR THE CHARLESTON AREA
 4 

  

                                                           
4 Results for Hollywood site are published in : Gheibi, E., Gassman, S.L. (2016). Engineering Geology, 

DOI: 10.1016/j.enggeo.2016.09.016. Reprinted here with permission of publisher. 

Results for Fort Dorchester site are submitted in : Gheibi, E., Gassman, S.L. Hasek, M., Talwani, P. (2017). 

Bulletin of Earthquake Engineering.  
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ABSTRACT 

In this study, the minimum earthquake magnitude and peak ground acceleration required 

to initiate liquefaction at the time of prehistoric earthquakes that date back to 11,000 

years before present at the Hollywood, Fort Dorchester, Sampit, and Gapway sites 

located in the South Carolina Coastal Plain were computed. In-situ geotechnical data, 

including cone penetration data with pore water pressure measurements, were used with 

empirical methods that account for the age of the soil deposit to back analyse the 

minimum peak ground acceleration. Results were then combined with the corresponding 

values obtained using Ground Motion Prediction Equations (GMPEs) to obtain a proper 

estimation of minimum amax-M of the prehistoric earthquakes at these sites. For instance, 

at the Hollywood site, when the age of the earthquake was not considered, the minimum 

magnitude ranged from 5.8 to 6.5 and the corresponding peak ground acceleration ranged 

from 0.31 to 0.39g. When the age of the earthquake was considered, the earthquake 

magnitude was found to be 0.2 to 0.3 units lower depending on earthquake age and the 

GMPE model. For the most recent prehistoric earthquake with the age of 546±17, the 

minimum M and amax ranged from 5.6 to 6.3 and from 0.26 to 0.34g, respectively. 

7.1 INTRODUCTION 

The South Carolina Coastal Plain (SCCP) experiences infrequent earthquakes, 

thus paleoliquefaction analysis plays an important role in studying the paleoseismicity of 

this region. As an example, over 160 paleoliquefaction features have been discovered at a 

site near Hollywood, South Carolina (Obermeier et al. 1987) that have been associated 

with earthquakes dating from 500 to 11,000 years B.P. (Talwani and Cox 1985 and 

Weems et al. 1986). Furthermore, sand blows have been discovered at the Sampit and 
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Gapway sites, and have been associated with earthquake episodes that occurred about 

546±17 and 1021±30 years ago at the Sampit site and 3548±66 and 5038±166 years ago 

at the Gapway site (Talwani and Schaeffer 2001). From studies of the paleoliquefaction 

features found in the SCCP, at least seven, large, prehistoric earthquakes have occurred 

within the last 6000 years in the SCCP with an average occurrence rate, based on the 

three most recent events, of about 500 years (Talwani and Schaeffer 2001). 

More recently, a sand blow was discovered at the Colonial Dorchester State 

Historical Park (Talwani et al. 2011). At this site, the 1886 Charleston earthquake caused 

significant structural damage to the walls of the fort; however, field evidence indicates 

that liquefaction did not occur during the 1886 earthquake. Thus, the recently discovered 

sand blow is evidence of liquefaction that occurred during a prehistoric earthquake that 

pre-dates the Charleston 1886 earthquake. The site provides additional information for 

determining the age-related liquefaction potential of SCCP soils and the investigation of 

an older paleo-liquefaction feature.  

Initial studies to investigate the paleoseismicity at the Hollywood site were 

performed by Martin 1990 and Martin and Clough 1994. Using geotechnical data (CPT, 

SPT and auger borings), they back calculated the peak ground acceleration, amax, to be 

0.3g based on the Seed et al. 1984 method and 0.2g from the Ishihara 1985 method. They 

combined the Seed et al. 1984 and Ishihara 1985 procedures and found amax equal to 

0.25g for earthquake magnitude, M, equal to 7.5. They did not consider the effect of the 

soil deposit age on the results. More recent studies by Gheibi and Gassman 2015 as 

discussed in Chapter 4, used methods developed by Hu et al. 2002a, 2002b and Leon et 

al. 2005 with site-specific geotechnical data (e.g. (N1)60 from the standard penetration test 
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(SPT) and qc1 from the cone penetration test (CPT))  in the vicinity of paleoliquefaction 

features studied by Talwani and Schaeffer 2001 to estimate the minimum values of 

magnitudes and peak ground accelerations associated with earthquakes that occurred at 

the Hollywood site. Time dependent studies by Mesri et al. 1990 and Kulhawy and 

Mayne 1990 were used to account for the soil age. The earthquake magnitude at the time 

of earthquake was found to be lower when accounting for age. For example at the 

Hollywood site, for the most recent prehistoric earthquake with the age of 546±17 years 

B.P., the magnitude ranged from 5.7 to 6.7 with corresponding acceleration ranging from 

0.17 to 0.30g.  

Given the uncertainties associated with back-analysis (e.g. factors related to 

liquefaction susceptibility, factors related to field observations and ground failure 

mechanisms, factors related to seismicity, and validity of in-situ testing techniques), 

Olson et al. 2005 recommended a regional approach using acceleration attenuation 

models in combination with cyclic stress methods to minimize the uncertainties 

associated with back-calculation of the peak ground acceleration and earthquake 

magnitude. They recommended first performing back-calculations using liquefaction 

evaluation procedures at individual sites to estimate a likely combination of amax and M, 

then integrating the back-calculations at individual sites into a regional assessment to 

better assess the magnitude of the paleo-earthquake. This procedure overcomes some 

uncertainties related to time-depending mechanisms (aging) and changes in density 

resulting from liquefaction discussed by Olson et al. 2001. Use of this approach was 

illustrated by Green et al. 2005 for the Vincennes Earthquake that occurred around 6100 

years B.P. in the Wabash Valley. Mechanical and chemical effects of aging were 
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interpreted to be small for the soils within the study area, thus an aging correction factor 

was not applied to the measured penetration resistance data. 

The purpose of this study is to re-examine the geotechnical data collected at the 

Hollywood, Fort Dorchester, Sampit, and Gapway sites and back-calculate the minimum 

magnitude and acceleration required to initiate prehistoric liquefaction using regionally 

proper attenuation models (GMPEs) in combination with cyclic stress methods that 

account for time-dependent mechanisms to form a regional assessment of minimum amax-

M in the SCCP. Attenuation models from Toro et al. 1997, Tavakoli and Pezeshk 2005, 

Atkinson 2008’ and Pezeshk et al. 2011 are used with the semi-empirical cyclic stress 

method of Idriss and Boulanger 2008 and the time dependent approaches of Kulhawy and 

Mayne 1990 and Hayati and Andrus 2009. The results will be compared to earlier back-

calculations by Martin and Clough 1994 and Gheibi and Gassman 2015 for the 

Hollywood site and to the results in Chapter 5 for the Fort Dorchester site. The Sampit 

and Gapway results will be compared to earlier work by Gheibi and Gassman 2014 and 

Leon et al. 2005. 

7.2 SITES STUDIED 

Descriptions of the Hollywood, Fort Dorchester, Sampit, and Gapway sites are 

explored in previous chapters. Readers are referred to Section 4.2 for a description of the 

Hollywood site, Section 5.2 for the Fort Dorchester site and Section 3.2 for the Sampit 

and Gapway sites. 

7.3 FRAMEWORK FOR AGE CORRECTION 

As proposed by Leon et al. 2005 the empirical correlations for liquefaction 

evaluation (i.e. Seed’s Simplified method, as reported in Youd and Idriss 1997) that were 
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developed based on freshly deposited or young (Holocene) soils can be used for older soil 

deposits as long as the currently measured penetration resistances are modified to account 

for the effect of time dependent processes (i.e. “aging”). For the study herein, two 

methods were used to account for aging by correcting the current cone penetration tip 

resistance to a representative post-earthquake penetration resistance value; the 

methodology of Kulhawy and Mayne 1990 (one of two methods proposed by Leon et al. 

2005; the other being Mesri et al. 1990) and the methodology of Hayati and Andrus 2009.  

The post-earthquake value of penetration resistance, rather than the pre-earthquake 

penetration resistance (as proposed by Leon et al. 2005 and used in Gheibi and Gassman 

2014 and Gheibi and Gassman 2015), is used herein because the Energy Intensity 

equation (Pond and Martin 1997) and the empirical relations between CRR and in situ 

measurements are almost exclusively based on field data measurements after 

earthquakes, not prior to earthquakes, and thus inherently account for disturbance (Olson 

et al. 2005).  

The Kulhawy and Mayne 1990 method is based on collected SPT blow count data 

and relative density data as a function of soil particle size, D50, for aged fine to medium 

overconsolidated sands from four geologic periods. A correction factor, CA, was 

proposed to describe the influence of aging (t) on the (N1)60/Dr
2 ratio. This correction 

factor was extended to CPT data by Leon et al. 2005 and used herein to correlate the 

current penetration tip resistance to the post-earthquake values of penetration resistance, 

qc1 (post).  

The methodology of Hayati and Andrus 2009 uses an updated liquefaction 

resistance correction factor, KDR, given in Equation 7.1, where t is the time since initial 



www.manaraa.com

118 

deposition or critical disturbance in years, to find CRRk (the deposit resistance-corrected 

CRR) from Equation 7.2. KDR is based on data from over 30 sites in five countries and is 

used to account for the influence of age, cementation and stress history on CRR. 

 

KDR = 0.13. log(t) + 0.83 (7.1) 

CRRK = CRR. KDR (7.2) 

 

where t is the time since initial deposition or critical disturbance in years, to find CRRk 

(the deposit resistance-corrected CRR). Age of prehistoric earthquakes used to back-

calculate CPT tip resistance and CRR are associated with discovered sand blows at each 

site. Prehistoric earthquakes at the Hollywood, Sampit, and Gapway sites were inferred to 

be in the Charleston seismic source zone (Talwani and Schaeffer 2001); whereas, at the 

Fort Dorchester site, the earthquake has been associated with a splay of the Sawmill 

Branch fault zone in the Middleton Place Summerville seismic zone (Talwani et al. 

2011).  

The average qc1 values of tip resistance found using Kulhawy and Mayne 1990 

and Hayati and Andrus 2009 methods for the ages associated with age of earthquakes 

(i.e., qc1(post)) are summarized in Table 7.1 for the CPT soundings. As shown, in both 

cases the average values of tip resistance corrected for age are less than when no 

correction is considered. The average CRR values that have been corrected for age (i.e, 

CRR (post)) using Kulhawy and Mayne 1990 and Hayati and Andrus 2009 are in a good 

agreement.  
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Table 7.1 Average values of qc1 and CRR for the source sand layer that have been 

corrected for age. 
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HWD-4 10 0.18 8 0.15 0.15 8 0.15 0.14 8 0.14 0.14 8 0.14 0.14 - - - - - - 

HWD-5 9 0.17 7 0.13 0.13 7 0.13 0.13 7 0.13 0.12 7 0.13 0.12 - - - - - - 

HWD-6 10 0.21 8 0.17 0.16 8 0.16 0.16 8 0.16 0.15 8 0.16 0.15 - - - - - - 

FD-1 9 0.19 - - - - - - - - - - - - 7 0.15 0.16 7 0.15 0.15 

FD-2 11 0.15 - - - - - - - - - - - - 8 0.16 0.15 8 0.16 0.15 

FD-3 9 0.15 - - - - - - - - - - - - 7 0.13 0.13 7 0.13 0.13 

FD-7 8 0.14 - - - - - - - - - - - - 6 0.12 0.11 6 0.12 0.11 

SAM-1 10 0.16 8 0.12 0.12 8 0.12 0.12 - - - - - - - - - - - - 

SAM-2 9 0.14 7 0.11 0.11 7 0.11 0.11 - - - - - - - - - - - - 

SAM-3 10 0.23 8 0.16 0.18 8 0.16 0.18 - - - - - - - - - - - - 

GAP-1 6 0.11 - - - - - - 5 0.09 0.08 5 0.09 0.08 - - - - - - 

GAP-2 11 0.13 - - - - - - 9 0.14 0.1 9 0.14 0.09 - - - - - - 

GAP-3 4 0.08 - - - - - - 3 0.07 0.05 3 0.07 0.05 - - - - - - 

K&M stands for Kulhawy and Mayne 1990 and H&A stands for Hayati and Andrus 2009. 

 

7.4 PALEOLIQUEFACTION BACK-ANALYSIS PROCEDURE 

Techniques proposed by Olson et al. 2005 and Green et al. 2005 were used in this 

study to reduce the uncertainties associated with back-analysis. Back-calculation was 

conducted using liquefaction procedures at each test location to determine the minimum 

required peak ground acceleration for different earthquake magnitudes. The obtained 

values of M and amax were then combined with regional attenuation relationships to 

determine the proper combinations of amax-M.     

7.4.1 Back Analysis of Peak Ground Acceleration 
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The peak ground acceleration at the surface was found using the following 

equation as a function of the earthquake magnitude and the cyclic stress ratio for a given 

earthquake (CSRM=7.5,σvc=1
, ) given by Idriss and Boulanger 2008: 

 

𝑎𝑚𝑎𝑥 = 𝐶𝑆𝑅𝑀=7.5,𝜎𝑣𝑐′ =1 ∗ 𝑀𝑆𝐹 ∗ 𝐾𝜎 ⁡ ∗ (
𝜎𝑣0
′ ∗ 𝑔

0.65 ∗ 𝑟𝑑 ∗ 𝜎𝑣0
) 

(7.3) 

 

where σv0 is the vertical stress and σv0
′  is the vertical effective stress at depth z, and rd is 

the reduction factor that considers the flexibility of soil column. The magnitude scaling 

factor (MSF) is used for earthquakes with magnitudes other than 7.5. Kσ is the 

overburden correction factor which has effect on the normalized cone penetrometer 

resistance for calculation of CRR. The proposed relations of MSF, rd, Kσ and CN of Idriss 

and Boulanger 2008 were used in this study.  

For a factor of safety against liquefaction (FSliq) of one, CSR is equal to CRR and 

CSRM=7.5,σvc=1
,  is obtained for Equation 7.3 using the relation between CRR and (qc1N)cs 

given by Idriss and Boulanger 2008:  

 

𝐶𝑅𝑅𝑀=7.5,𝜎𝑣𝑐
, =1 = 𝑒𝑥𝑝 {

(𝑞𝑐1𝑁)𝑐𝑠
540

+ (
(𝑞𝑐1𝑁)𝑐𝑠
67

)

2

− (
(𝑞𝑐1𝑁)𝑐𝑠
80

)

3

+ (
(𝑞𝑐1𝑁)𝑐𝑠
114

)

4

− 3} 
(7.4) 

 

where (qc1N)cs is a function of qc1N, the normalized value of qc1 by Pa, and the fines 

content, FC, as defined by Idriss and Boulanger 2008.  

The peak ground acceleration obtained by Equation 7.3 is a function of 

earthquake magnitude. An example of an amax-M combination for a hypothetical site is 
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shown in Figure 7.1. The factor of safety for the combinations blow the line (shaded part) 

is more than one and so the amax-M combinations above the line are proper for 

liquefaction initiation.  

 

 
 

Figure 7.1 An example of amax-M combination to 

trigger liquefaction (adapted from Green et al. 2005). 

 

7.4.2 Regional Ground Motion Prediction Equations (GMPEs) 

Liquefaction evaluation procedures provide a wide range of amax-M combinations 

for liquefaction initiation (see Figure 7.1). Ground Motion Prediction Equations define 

maximum acceleration as a function of earthquake magnitude and site-to-source distance, 

R. As there are many combinations sufficient to induce liquefaction, the results of both 

methods are combined to find the intersection of the results to provide a reasonable 

combination of amax-M. Green et al. 2005 explained this concept in a schematic design in 

Figure 7.2. As shown, the dashed line presents the amax-M combination obtained using 

GMPE for a hypothetical site. The point of intersection is the minimum estimation of 

earthquake magnitude and peak ground acceleration for liquefaction initiation. 
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Figure 7.2 Combined GMPE and liquefaction 

evaluation methods (adapted from Green et al. 2005). 

 

Four ground motion prediction equations were selected using the 2014 Update of 

the United States National Seismic Hazard Maps (Petersen et al. 2014). Toro et al. 1997 

(T02), Tavakoli and Pezeshk 2005 (TP05), Pezeshk et al. 2011 (P11) and Atkinson 2008’ 

(A08’) that are regionally proper for the central and eastern US (CEUS) were used in this 

study (see Table 7.2) to estimate maximum acceleration at the bedrock. Atkinson 2008’ 

refers to Atkinson 2008 as updated in Atkinson and Boore 2011.  

Small-strain stiffness, damping variation, and soil layer thickness for each soil 

layer and site topography are the local site conditions that influence site amplification 

(Idriss 1990). For the study herein the amplification factors per Aboye et al. 2015 were 

used to modify the results obtained from GMPEs to obtain the minimum peak ground 

acceleration at the surface. Site amplification factors found by Aboye et al. 2015, were 

obtained using 1-D ground response analysis and are most applicable for the Charleston 

area (flat area) assuming not to consider the actual topography of the bed rock. The soil 
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layer thickness in the Charleston area is assumed to be about 600 to 1200 m. Aboye et al. 

2015 noted that the shear wave velocity data at each depth used to find the site 

amplification factors were not generated assuming a correlation between layers. Accurate 

estimation of amplification factors requires information about correlation between layers 

and larger number of generated shear wave velocity data (Aboye et al. 2015). They also 

noted that the depth to soft and hard rock has significant effect on ground response 

analysis and further work is needed to consider the effect of depth variation to the soft 

and hard rock.  

 

Table 7.2 Ground motion prediction models used for back-calculations (adapted 

from USGS update 2014 (Petersen et al. 2014)). 

 

Model Abbreviation Site-to-Source distance Type 

Toro et al. (1997) T02 1 to 500 km Single Corner 

Tavakoli and Pezeshk (2005) TP05 1 to 1000 km Hybrid 

Atkinson (2008') A08' 1 to 500 km Reference Empirical 

Pezeshk et al. (2011) P11 1 to 1000 km Hybrid 

 

Site-to-source distance is the closest distance to the rupture at each site and was 

found by considering the epicentral and hypocentral distances at each site. For the 

Charleston Source, Dura-Gomez 2009 estimated the site-to-source distance at the 

Hollywood site to be about 25 km whereas at Sampit and Gapway sites, the site-to-source 

distance was estimated to range from 100 to 140 km (Talwani and Schaeffer 2001). For 

the Sawmill Branch fault, Talwani et al. 2011 suggested the site-to-source distance at the 

Fort Dorchester site to range from 4 to 10 km.  
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7.5 RESULTS 

7.5.1 Peak Ground Acceleration 

The age-corrected values of tip resistance and CRR in Table 7.1 were used in the 

procedure described in Section 7.4.1 to obtain the peak ground acceleration values for 

magnitudes ranging from 5 to 8. The results are shown in Table 7.3 and were found for 

each site by taking the average of amax found from all age corrected qc1 readings within 

the source sand layer. As shown in Table 7.3, regardless of the approach used to account 

for the age of the earthquake, the age-corrected peak ground acceleration values are 

smaller than when a correction for the age of the earthquake is not made. Furthermore, as 

shown in Figures 7.3, 7.4, 7.5, and 7.6 for each test location at Hollywood, Fort 

Dorchester, Sampit, and Gapway sites, respectively, peak ground acceleration values are 

slightly higher for younger sand blow ages.  As an example, when the age of sand blow is 

about 546 years B.P., the peak ground acceleration found using Kulhawy and Mayne 

1990 at HWD-6 is about 0.39g; whereas it is 0.36g for the sand blow age of about 5038 

years B.P. Also, the peak ground acceleration decreases as the earthquake magnitude 

increases. For example at the Fort Dorchester site (see Figure 7.4a), for the sand blow age 

of 3500 years B.P. using the Kulhawy and Mayne 1990 age relation for FD-1, a peak 

ground acceleration of 0.23g was obtained for M=7; whereas, 0.38g was found for M=5.  

Also as shown in Figures 7.3 to 7.6, peak ground accelerations found using 

Kulhawy and Mayne 1990 and Hayati and Andrus 2009 are in a good agreement.  The 

highest difference was found for SAM-3 and GAP-2.  At these sites, the peak ground 

acceleration found using Kulhawy and Mayne 1990 and Hayati and Andrus 2009 are up 

to 0.07 and 0.09g different for M=5.  
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Table 7.3 Values of amax found for source sand layer.  
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HWD-4 0.43 0.36 0.39 0.35 0.38 0.34 0.38 0.34 0.38 - - - - 

HWD-5 0.40 0.31 0.34 0.31 0.33 0.30 0.31 0.30 0.30 - - - - 

HWD-6 0.49 0.39 0.41 0.38 0.40 0.37 0.38 0.36 0.37 - - - - 

FD-1 0.49 - - - - - - - - 0.38 0.4 0.38 0.4 

FD-2 0.36 - - - - - - - - 0.38 0.36 0.38 0.35 

FD-3 0.30 - - - - - - - - 0.26 0.25 0.26 0.25 

FD-7 0.31 - - - - - - - - 0.27 0.24 0.27 0.24 

SAM-1 0.34 0.26 0.29 0.26 0.28 - - - - - - - - 

SAM-2 0.28 0.23 0.24 0.22 0.23 - - - - - - - - 

SAM-3 0.45 0.31 0.38 0.31 0.38 - - - - - - - - 

GAP-1 0.25 - - - - 0.21 0.20 0.20 0.19 - - - - 

GAP-2 0.29 - - - - 0.31 0.22 0.30 0.22 - - - - 

GAP-3 0.19 - - - - 0.17 0.15 0.17 0.14 - - - - 

6 

HWD-4 0.35 0.29 0.31 0.29 0.31 0.28 0.31 0.28 0.30 - - - - 

HWD-5 0.32 0.25 0.27 0.25 0.26 0.24 0.25 0.24 0.25 - - - - 

HWD-6 0.40 0.31 0.33 0.31 0.32 0.30 0.31 0.30 0.30 - - - - 

FD-1 0.40 - - - - - - - - 0.31 0.33 0.30 0.32 

FD-2 029 - - - - - - - - 0.31 0.29 0.30 0.28 

FD-3 0.24 - - - - - - - - 0.21 0.20 0.21 0.20 

FD-7 0.25 - - - - - - - - 0.22 0.19 0.21 0.19 

SAM-1 0.27 0.21 0.23 0.21 0.22 - - - - - - - - 

SAM-2 0.23 0.18 0.19 0.18 0.19 - - - - - - - - 

SAM-3 0.35 0.25 0.30 0.24 0.30 - - - - - - - - 

GAP-1 0.21 - - - - 0.17 0.16 0.17 0.16 - - - - 

GAP-2 0.24 - - - - 0.25 0.18 0.25 0.18 - - - - 

GAP-3 0.15 - - - - 0.14 0.12 0.14 0.12 - - - - 

7 

HWD-4 0.27 0.22 0.24 0.22 0.23 0.21 0.23 0.21 0.23 - - - - 

HWD-5 0.24 0.19 0.21 0.19 0.20 0.19 0.19 0.18 0.19 - - - - 

HWD-6 0.30 0.24 0.25 0.23 0.25 0.23 0.23 0.22 0.23 - - - - 

FD-1 0.30 - - - - - - - - 0.23 0.25 0.23 0.24 

FD-2 0.22 - - - - - - - - 0.23 0.22 0.23 0.21 

FD-3 0.18 - - - - - - - - 0.16 0.15 0.16 0.15 

FD-7 0.19 - - - - - - - - 0.16 0.15 0.16 0.14 

SAM-1 0.20 0.16 0.17 0.15 0.17 - - - - - - - - 

SAM-2 0.17 0.14 0.14 0.13 0.14 - - - - - - - - 

SAM-3 0.26 0.18 0.22 0.18 0.22 - - - - - - - - 



www.manaraa.com

126 

M
a

g
n

it
u

d
e 

T
es

t 
L

o
ca

ti
o

n
s 

N
o

 A
g

e 
C

o
rr

ec
ti

o
n

 

Age Corrected (Y.B.P) 
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GAP-1 0.16 - - - - 0.13 0.12 0.13 0.12 - - - - 

GAP-2 0.18 - - - - 0.19 0.14 0.19 0.14 - - - - 

GAP-3 0.12 - - - - 0.10 0.09 0.10 0.09 - - - - 

7.5 

HWD-4 0.23 0.19 0.21 0.19 0.20 0.18 0.20 0.18 0.20 - - - - 

HWD-5 0.21 0.17 0.18 0.17 0.17 0.16 0.17 0.16 0.16 - - - - 

HWD-6 0.26 0.21 0.22 0.20 0.21 0.20 0.20 0.19 0.20 - - - - 

FD-1 0.26 - - - - - - - - 0.20 0.21 0.20 0.21 

FD-2 0.19 - - - - - - - - 0.20 0.19 0.20 0.18 

FD-3 0.16 - - - - - - - - 0.14 0.13 0.14 0.13 

FD-7 0.16 - - - - - - - - 0.14 0.13 0.14 0.12 

SAM-1 0.18 0.14 0.15 0.13 0.14 - - - - - - - - 

SAM-2 0.15 0.12 0.13 0.12 0.12 - - - - - - - - 

SAM-3 0.23 0.16 0.19 0.15 0.19 - - - - - - - - 

GAP-1 0.14 - - - - 0.11 0.11 0.11 0.11 - - - - 

GAP-2 0.16 - - - - 0.17 0.12 0.17 0.12 - - - - 

GAP-3 0.10 - - - - 0.09 0.08 0.09 0.08 - - - - 

8 

HWD-4 0.20 0.17 0.18 0.17 0.18 0.16 0.18 0.16 0.18 - - - - 

HWD-5 0.19 0.15 0.16 0.14 0.15 0.14 0.14 0.14 0.14 - - - - 

HWD-6 0.23 0.18 0.19 0.18 0.19 0.17 0.18 0.17 0.17 - - - - 

FD-1 0.23 - - - - - - - - 0.18 0.19 0.18 0.18 

FD-2 0.16 - - - - - - - - 0.17 0.16 0.17 0.16 

FD-3 0.14 - - - - - - - - 0.12 0.11 0.12 0.11 

FD-7 0.14 - - - - - - - - 0.12 0.11 0.12 0.11 

SAM-1 0.15 0.12 0.13 0.12 0.13 - - - - - - - - 

SAM-2 0.13 0.10 0.11 0.10 0.11 - - - - - - - - 

SAM-3 0.20 0.14 0.17 0.13 0.16 - - - - - - - - 

GAP-1 0.12 - - - - 0.10 0.09 0.10 0.09 - - - - 

GAP-2 0.14 - - - - 0.15 0.11 0.15 0.11 - - - - 

GAP-3 0.09 - - - - 0.08 0.07 0.08 0.07 - - - - 

K&M stands for Kulhawy and Mayne 1990 and H&A stands for Hayati and Andrus 2009. 
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Figure 7.3 Relation between amax and M for each test location at Hollywood site: (a) 

HWD-4, (b) HWD-5, and (c) HWD-6. 
 

 

 

 
 

Figure 7.4 Relation between amax and M for each test location at Fort Dorchester site: 

(a) FD-1, (b) FD-2, (c) FD-3, and (d) FD-7. 
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Figure 7.5 Relation between amax and M for each test location at Sampit site: (a) SAM-1, 

(b) SAM-2, and (c) SAM-3. 
 

 

 
 

Figure 7.6 Relation between amax and M for each test location at Gapway site: (a) GAP-

1, (b) GAP-2, and (c) GAP-3. 
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7.5.2 Earthquake Magnitude 

 The age-corrected values of tip resistance and CRR in Table 7.1 were used to estimate 

the peak ground acceleration at the time of earthquake as a function of earthquake 

magnitude (see Figures 7.3 to 7.6) using the cyclic stress method as described in Section 

7.5.1. Four regionally proper GMPEs discussed in section 7.4.2 were also used to find the 

intersection point with the acceleration values found from the cyclic stress method to 

estimate the minimum peak ground acceleration and earthquake magnitude. This is 

shown in Figures 7.7, 7.8, 7.9, and 7.10 and tabulated in Tables 7.4, 7.5, 7.6, and 7.7 for 

the Hollywood, Fort Dorchester, Sampit and Gapway sites, respectively. Results at each 

site were obtained using GMPEs for the range of site-to-source distance discussed in 

section 7.4.2 combined with the acceleration values for each sand blow age found using 

both the Kulhawy and Mayne 1990 and Hayati and Andrus 2009 approaches. At Fort 

Dorchester, the minimum amax-M was obtained for only a sand blow age of 3500 years 

because, even though the age of the sand blow is unknown and could be as old as 10,000 

years B.P., for the results found using GMPEs, the age of the sand blow (a difference of 

2500 yrs) had a negligible effect on the back-calculated magnitude (0.l to 0.2 units).   

 

 

 



www.manaraa.com

130 

 
 

Figure 7.7 Combination of the cyclic stress method and GMPEs to find the minimum amax 

and M for each test location at the Hollywood site: (a) HWD-4, (b) HWD-5, and (c) 

HWD-6.
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Table 7.4 Minimum amax-M for each test location at the Hollywood site, found using the 

combined methods of cyclic stress and GMPEs for different earthquake episodes. 
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No Age 

Correction 

Age Corrected (Y.B.P) 

546±17 1021±30 3548±66 5038±166 

K&M H&A K&M H&A K&M H&A K&M H&A 

HWD-4 

T02 
M 6.1 6.1 6.0 6.0 5.9 6.0 5.9 6.0 5.9 

amax 0.34 0.29 0.32 0.29 0.31 0.28 0.32 0.28 0.31 

TP05 
M 5.9 5.8 5.7 5.8 5.7 5.7 5.6 5.7 5.6 

amax 0.36 0.31 0.34 0.30 0.33 0.30 0.34 0.30 0.33 

A08' 
M 5.8 5.7 5.7 5.8 5.6 5.7 5.6 5.7 5.6 

amax 0.37 0.31 0.34 0.30 0.33 0.30 0.34 0.30 0.34 

P11 
M 5.9 5.8 5.7 5.8 5.6 5.7 5.6 5.7 5.5 

amax 0.36 0.31 0.34 0.30 0.33 0.30 0.34 0.30 0.34 

HWD-5 

T02 
M 6.2 5.9 6.0 5.9 5.9 5.9 5.9 5.9 5.8 

amax 0.31 0.26 0.28 0.26 0.27 0.25 0.26 0.25 0.26 

TP05 
M 5.8 5.6 5.7 5.6 5.6 5.6 5.6 5.6 5.6 

amax 0.33 0.28 0.29 0.28 0.29 0.27 0.28 0.27 0.27 

A08' 
M 5.8 5.6 5.6 5.6 5.6 5.6 5.6 5.5 5.5 

amax 0.34 0.28 0.30 0.28 0.29 0.27 0.28 0.27 0.27 

P11 
M 5.9 5.6 5.7 5.6 5.6 5.5 5.6 5.5 5.5 

amax 0.33 0.28 0.29 0.28 0.29 0.27 0.28 0.27 0.27 

HWD-6 

T02 
M 6.5 6.2 6.3 6.2 6.3 6.2 6.2 6.2 6.2 

amax 0.35 0.30 0.31 0.29 0.30 0.29 0.29 0.28 0.29 

TP05 
M 6.1 5.9 5.9 5.9 5.9 5.8 5.9 5.8 5.8 

amax 0.39 0.32 0.34 0.32 0.33 0.31 0.32 0.31 0.31 

A08' 
M 6.1 5.9 5.9 5.9 5.9 5.8 5.9 5.8 5.8 

amax 0.39 0.32 0.34 0.32 0.33 0.31 0.32 0.31 0.31 

P11 
M 6.3 5.9 6.1 6.0 6.0 5.9 5.9 5.9 5.9 

amax 0.37 0.32 0.33 0.31 0.32 0.30 0.31 0.30 0.31 

K&M stands for Kulhawy and Mayne 1990 and H&A stands for Hayati and Andrus 2009. 
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Figure 7.8 Combination of the cyclic stress method and GMPEs to find the minimum 

amax and M for each test location at the Fort Dorchester site: (a) FD-1, (b) FD-2, (c) FD-

3, and (d) FD-7. 
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Table 7.5 Minimum amax-M for each test location at the Fort Dorchester site, found using 

the combined methods of cyclic stress and GMPEs for different earthquake episodes. 
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No Age Correction Age Corrected (Y.B.P.) 

3500 

Site-to-Source Distance Site-to-Source Distance 

4 km 6 km 8 km 10 km 
4 km 6 km 8 km 10 km 

K&M H&A K&M H&A K&M H&A K&M H&A 

FD-1 

T02 
M 6.1 6.2 6.1 5.9 5.6 5.7 5.6 5.7 5.6 5.8 5.6 5.9 

amax 0.39 0.38 0.39 0.41 0.34 0.35 0.34 0.35 0.34 0.35 0.34 0.34 

TP05 
M 5.9 5.9 6.0 6.1 5.4 5.6 5.4 5.6 5.5 5.7 5.6 5.8 

amax 0.42 0.41 0.40 0.39 0.35 0.36 0.35 0.36 0.35 0.35 0.34 0.35 

A08' 
M 5.7 5.4 5.5 5.7 5.2 5.3 4.9 5.1 5.1 5.1 5.2 5.2 

amax 0.44 0.46 0.45 0.44 0.37 0.38 0.38 0.40 0.38 0.39 0.37 0.39 

P11 
M 5.4 5.5 5.6 5.7 5.1 5.2 5.2 5.3 5.2 5.3 5.3 5.4 

amax 0.46 0.46 0.45 0.44 0.37 0.39 0.37 0.38 0.36 0.38 0.36 0.37 

FD-2 

T02 
M 5.7 5.6 5.6 5.5 6.0 6.1 6.1 6.1 5.8 5.8 5.8 5.6 

amax 0.31 0.32 0.32 0.33 0.31 0.28 0.31 0.28 0.33 0.31 0.33 0.32 

TP05 
M 6.1 6.1 6.0 6.1 5.9 6.3 5.9 6.1 6.0 6.2 6.0 6.2 

amax 0.29 0.28 0.29 0.28 0.32 0.27 0.32 0.28 0.31 0.27 0.31 0.28 

A08' 
M 4.7 4.5 4.6 4.8 5.2 4.8 4.9 4.6 5.1 4.6 5.2 4.7 

amax 0.36 0.36 0.36 0.36 0.37 0.36 0.38 0.36 0.38 0.36 0.37 0.36 

P11 
M 5.2 5.2 5.2 5.2 5.3 5.3 5.3 5.2 5.4 5.2 5.4 5.2 

amax 0.34 0.35 0.35 0.35 0.36 0.34 0.36 0.34 0.35 0.34 0.35 0.34 

FD-3 

T02 
M 5.4 5.3 5.2 5.2 5.7 5.9 5.7 5.8 5.3 5.4 5.2 5.2 

amax 0.28 0.29 0.29 0.29 0.24 0.21 0.24 0.22 0.25 0.24 0.25 0.24 

TP05 
M 5.8 5.8 5.9 5.9 5.6 6.1 5.6 5.9 5.7 6.1 5.7 6.3 

amax 0.26 0.26 0.25 0.24 0.24 0.20 0.24 0.20 0.23 0.20 0.23 0.19 

A08' 
M 4.3 4.5 4.7 4.9 4.5 4.6 4.3 4.3 4.5 4.4 4.7 4.6 

amax 0.31 0.31 0.30 0.30 0.26 0.25 0.27 0.26 0.26 0.26 0.26 0.25 

P11 
M 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 

amax 0.30 0.29 0.29 0.29 0.26 0.25 0.26 0.25 0.26 0.25 0.26 0.25 

FD-7 

T02 
M 5.3 5.2 5.3 5.3 5.4 5.4 5.3 5.3 5.2 5.2 5.2 5.2 

amax 0.30 0.30 0.30 0.30 0.25 0.23 0.26 0.23 0.26 0.23 0.26 0.23 

TP05 
M 5.8 5.5 5.7 5.5 5.8 5.7 5.7 5.7 5.9 5.8 5.8 5.9 

amax 0.27 0.28 0.28 0.28 0.23 0.21 0.24 0.21 0.22 0.21 0.23 0.20 

A08' 
M 4.4 4.6 4.8 4.9 4.3 4.3 4.4 4.3 4.6 4.5 4.7 4.6 

amax 0.32 0.31 0.31 0.31 0.28 0.25 0.28 0.25 0.27 0.25 0.27 0.24 

P11 
M 5.1 5.1 5.1 5.1 5.1 5.0 5.1 5.1 5.1 5.1 5.1 5.1 

amax 0.31 0.31 0.30 0.30 0.27 0.24 0.27 0.24 0.27 0.24 0.27 0.24 

K&M stands for Kulhawy and Mayne 1990 and H&A stands for Hayati and Andrus 2009. 
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Figure 7.9 Combination of the cyclic stress method and GMPEs to find the minimum amax 

and M for each test location at the Sampit site: (a) SAM-1, (b) SAM-2, and (c) SAM-3. 
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Table 7.6 Minimum amax-M for each test location at the Sampit site, found using the 

combined methods of cyclic stress and GMPEs for different earthquake episodes. 
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 No Age 

Correction 

Age Corrected (Y.B.P.) 

546±17 1021±30 

Site-to-Source 

Distance 
100 km 140 km 100 km 140 km 

100 km 140 km K&M H&A K&M H&A K&M H&A K&M H&A 

SAM-1 

T02 
M 7.3 7.6 7.1 7.1 7.4 7.5 7.1 7.1 7.4 7.4 

amax 0.19 0.17 0.16 0.16 0.14 0.15 0.15 0.16 0.13 0.14 

TP05 
M 6.9 7.1 6.7 6.8 6.9 6.9 6.7 6.7 6.9 6.9 

amax 0.20 0.20 0.17 0.18 0.17 0.17 0.17 0.18 0.16 0.18 

A08' 
M 6.4 6.7 6.2 6.2 6.5 6.5 6.2 6.2 6.5 6.5 

amax 0.24 0.22 0.20 0.22 0.18 0.20 0.20 0.21 0.18 0.19 

P11 
M 7.3 7.4 7.0 7.0 7.1 7.2 7.0 7.0 7.1 7.2 

amax 0.19 0.18 0.16 0.17 0.16 0.16 0.15 0.17 0.15 0.16 

SAM-2 

T02 
M 7.1 7.4 6.9 7.0 7.2 7.2 6.9 7.0 7.2 7.1 

amax 0.16 0.15 0.14 0.14 0.13 0.14 0.13 0.14 0.13 0.13 

TP05 
M 6.8 7.0 6.6 6.6 6.8 6.8 6.6 6.6 6.7 6.8 

amax 0.18 0.17 0.16 0.16 0.15 0.15 0.15 0.16 0.14 0.15 

A08' 
M 6.3 6.6 6.1 6.1 6.4 6.4 6.0 6.1 6.4 6.4 

amax 0.21 0.19 0.18 0.18 0.16 0.17 0.18 0.19 0.16 0.17 

P11 
M 7.0 7.1 6.8 6.9 7.0 7.0 6.8 6.9 7.0 6.9 

amax 0.17 0.17 0.15 0.14 0.14 0.14 0.14 0.15 0.13 0.14 

SAM-3 

T02 
M 7.4 7.2 7.2 7.3 7.5 7.2 7.2 7.2 7.5 7.3 

amax 0.24 0.25 0.17 0.20 0.16 0.21 0.17 0.21 0.15 0.20 

TP05 
M 7.1 7.3 6.9 7.0 7.0 7.1 6.9 7.0 7.0 7.1 

amax 0.25 0.24 0.19 0.22 0.18 0.21 0.19 0.22 0.18 0.21 

A08' 
M 6.7 7.0 6.3 6.5 6.7 6.8 6.3 6.5 6.7 6.8 

amax 0.29 0.26 0.23 0.26 0.20 0.23 0.22 0.26 0.20 0.23 

P11 
M 7.3 7.2 7.2 7.2 7.3 7.3 7.1 7.2 7.3 7.2 

amax 0.24 0.25 0.17 0.21 0.17 0.20 0.17 0.21 0.16 0.21 

K&M stands for Kulhawy and Mayne 1990 and H&A stands for Hayati and Andrus 2009. 
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Figure 7.10 Combination of the cyclic stress method and GMPEs to find the minimum 

amax and M for each test location at the Gapway site: (a) GAP-1, (b) GAP-2, and (c) 

GAP-3. 
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Table 7.7 Minimum amax-M for each test location at the Gapway site, found using the 

combined methods of cyclic stress and GMPEs for different earthquake episodes. 
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No Age 

Correction 

Age Corrected (Y.B.P.) 

3548±66 5038±166 

Site-to-Source 

Distance 
100 km 140 km 100 km 140 km 

100 km 140 km K&M H&A K&M H&A K&M H&A K&M H&A 

GAP-1 

T02 
M 7.0 7.0 6.8 6.7 7.2 7.0 6.8 6.6 7.2 6.9 

amax 0.16 0.16 0.14 0.13 0.12 0.12 0.14 0.13 0.12 0.12 

TP05 
M 6.7 6.8 6.5 6.4 6.6 6.5 6.5 6.3 6.6 6.5 

amax 0.18 0.17 0.15 0.15 0.14 0.14 0.15 0.15 0.14 0.14 

A08' 
M 6.1 6.5 6.0 5.9 6.2 6.2 6.0 5.9 6.2 6.2 

amax 0.20 0.19 0.17 0.16 0.16 0.15 0.17 0.16 0.16 0.15 

P11 
M 6.9 7.0 6.7 6.6 6.9 6.7 6.7 6.6 6.9 6.7 

amax 0.16 0.16 0.14 0.14 0.14 0.13 0.14 0.14 0.14 0.13 

GAP-2 

T02 
M 6.7 7.0 6.6 6.4 6.9 6.6 6.6 6.3 6.9 6.6 

amax 0.20 0.18 0.21 0.17 0.20 0.16 0.21 0.17 0.20 0.16 

TP05 
M 6.4 6.6 6.4 6.2 6.6 6.3 6.4 6.2 6.6 6.3 

amax 0.21 0.21 0.23 0.17 0.22 0.17 0.23 0.17 0.22 0.17 

A08' 
M 6.0 6.2 5.9 5.9 6.2 6.0 6.0 5.8 6.2 6.0 

amax 0.24 0.23 0.25 0.19 0.24 0.18 0.25 0.19 0.24 0.18 

P11 
M 6.6 6.7 6.5 6.3 6.6 6.4 6.6 6.3 6.6 6.4 

amax 0.20 0.20 0.22 0.17 0.22 0.16 0.22 0.17 0.22 0.16 

GAP-3 

T02 
M 6.8 7.1 6.6 6.4 7.0 6.8 6.6 6.4 7.0 6.7 

amax 0.13 0.11 0.11 0.11 0.10 0.10 0.11 0.11 0.10 0.10 

TP05 
M 6.4 6.6 6.3 6.1 6.5 6.3 6.3 6.1 6.5 6.3 

amax 0.14 0.13 0.13 0.12 0.12 0.11 0.13 0.12 0.12 0.11 

A08' 
M 5.9 6.2 5.8 5.7 6.1 5.9 5.8 5.7 6.1 5.9 

amax 0.15 0.14 0.15 0.13 0.14 0.12 0.15 0.13 0.14 0.12 

P11 
M 6.7 6.8 6.5 6.3 6.7 6.4 6.5 6.3 6.7 6.4 

amax 0.13 0.13 0.12 0.11 0.11 0.11 0.12 0.11 0.11 0.11 

K&M stands for Kulhawy and Mayne 1990 and H&A stands for Hayati and Andrus 2009. 

 

As shown in Figures 7.7 to 7.10 and the corresponding Tables 7.4 to 7.7, the 

earthquake magnitudes found using Kulhawy and Mayne 1990 and Hayati and Andrus 

2009 are in a good agreement - M differed by up to 0.2, 0.5, 0.3, and 0.3 units and the 

amax differed by up to 0.04, 0.05, 0.05, and 0.06g for Hollywood, Fort Dorchester, Sampit 

and Gapway sites, respectively. Also it is shown that, an increase in the time of soil aging 
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leads to a slight decrease in the required magnitude and peak ground acceleration for 

liquefaction initiation at time of earthquake. For instance, if the age of earthquake is not 

considered, using the Pezeshk et al. 2011 model, the amax-M at HWD-4 is 0.36g-5.9; 

whereas, for the most recent and oldest earthquakes the range of earthquake magnitude is 

5.7 to 5.8 and 5.5 to 5.7, respectively. The corresponding acceleration also decreases to 

range from 0.31 to 0.34g when the soil age is about 546±17 years B.P. and ranges from 

0.30 to 0.34g when the soil age is about 5038±166 years B.P. Results for Hollywood site 

indicate that the T02 model predicts slightly larger earthquake magnitudes (around 5% 

larger) than the other three models.  

The difference between M values for the range of site-to-source distance used in 

the analysis (a difference of 6 km (4 km to 10 km) at Fort Dorchester and difference of 40 

km (100 km to 140 km) at Sampit and Gapway) is up to 0.7, 0.4 and 0.4 units at Fort 

Dorchester, Sampit and Gapway sites, respectively. Table 7.8 presents the range of 

minimum earthquake magnitude and peak ground acceleration at each test location at the 

four sites using the four attenuation models.   

At the Fort Dorchester site, the A08’ model predicted lower minimum earthquake 

magnitudes (up to 1.3 units) than the other three models. The A08’ model also predicted 

lower earthquake magnitudes (up to 1 unit) at the Sampit and Gapway sites. Table 7.9 

presents the range of minimum earthquake magnitude and peak ground acceleration at 

each test location for the attenuation models of T02, TP05 and P11 combined at Fort 

Dorchester, Sampit, and Gapway sites (based on the good agreement between T02, TP05 

and P11). 
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Table 7.8 Range of minimum amax-M at each test location found using the combined 

methods of cyclic stress and GMPEs.  

 

Test 

Location 
Model 

Earthquake 

Magnitudes 

No Age 

Correction  

Age Corrected (Y.B.P) 

Charleston Source 

Sawmill 

Branch 

fault 

546±17 1021±30 3548±66 5038±166 3500 

HWD-4 

T02 
M 6.1 6.0-6.1 5.9-6.0 5.9-6.0 5.9-6.0 - 

amax 0.34 0.29-0.32 0.29-0.31 0.28-0.32 0.28-0.31 - 

TP05 
M 5.9 5.7-5.8 5.7-5.8 5.6-5.7 5.6-5.7 - 

amax 0.36 0.31-0.34 0.30-0.33 0.30-0.34 0.30-0.33 - 

A08' 
M 5.8 5.7 5.6-5.8 5.6-5.7 5.6-5.7 - 

amax 0.37 0.31-0.34 0.30-0.33 0.30-0.34 0.30-0.34 - 

P11 
M 5.9 5.7-5.8 5.6-5.8 5.6-5.7 5.5-5.7 - 

amax 0.36 0.31-0.34 0.30-0.33 0.30-0.34 0.30-0.34 - 

HWD-5 

T02 
M 6.2 5.9-6.0 5.9 5.9 5.8-5.9 - 

amax 0.31 0.26-0.28 0.26-0.27 0.25-0.26 0.25-0.26 - 

TP05 
M 5.8 5.6-5.7 5.6 5.6 5.6 - 

amax 0.33 0.28-0.29 0.28-0.29 0.27-0.28 0.27 - 

A08' 
M 5.8 5.6 5.6 5.6 5.5 - 

amax 0.34 0.28-0.30 0.28-0.29 0.27-0.28 0.27 - 

P11 
M 5.9 5.6-5.7 5.6 5.5-5.6 5.5 - 

amax 0.33 0.28-0.29 0.28-0.29 0.27-0.28 0.27 - 

HWD-6 

T02 
M 6.5 6.2-6.3 6.2-6.3 6.2 6.2 - 

amax 0.35 0.30-0.31 0.29-0.30 0.29 0.28-0.29 - 

TP05 
M 6.1 5.9 5.9 5.8-5.9 5.8 - 

amax 0.39 0.32-0.34 0.32-0.33 0.31-0.32 0.31 - 

A08' 
M 6.1 5.9 5.9 5.8-5.9 5.8 - 

amax 0.39 0.32-0.34 0.32-0.33 0.31-0.32 0.31 - 

P11 
M 6.3 5.9-6.1 6.0 5.9 5.9 - 

amax 0.37 0.32-0.33 0.31-0.32 0.30-0.31 0.30-0.31 - 

FD-1 

T02 
M 5.9-6.2 - - - - 5.6-5.9 

amax 0.38-0.41 - - - - 0.34-0.35 

TP05 
M 5.9-6.1 - - - - 5.4-5.8 

amax 0.39-0.42 - - - - 0.34-0.36 

A08' 
M 5.4-5.7 - - - - 4.9-5.3 

amax 0.44-0.46 - - - - 0.37-0.40 

P11 
M 5.4-5.7 - - - - 5.1-5.4 

amax 0.44-0.46 - - - - 0.36-0.39 

FD-2 

T02 
M 5.5-5.7 - - - - 5.6-6.1 

amax 0.31-0.33 - - - - 0.28-0.33 

TP05 
M 6.0-6.1 - - - - 5.9-6.3 

amax 0.28-0.29 - - - - 0.27-0.32 

A08' 
M 4.5-4.8 - - - - 4.6-5.2 

amax 0.36 - - - - 0.36-0.38 

P11 
M 5.2 - - - - 5.2-5.4 

amax 0.34-0.35 - - - - 0.34-0.36 

FD-3 T02 M 5.2-5.4 - - - - 5.2-5.9 



www.manaraa.com

140 

Test 

Location 
Model 

Earthquake 

Magnitudes 

No Age 

Correction  

Age Corrected (Y.B.P) 

Charleston Source 

Sawmill 

Branch 

fault 

546±17 1021±30 3548±66 5038±166 3500 

amax 0.28-0.29 - - - - 0.21-0.25 

TP05 
M 5.8-5.9 - - - - 5.6-6.3 

amax 0.24-0.26 - - - - 0.19-0.24 

A08' 
M 4.3-4.9 - - - - 4.3-4.7 

amax 0.30-0.31 - - - - 0.25-0.27 

P11 
M 5.1 - - - - 5.1 

amax 0.29-0.30 - - - - 0.25-0.26 

FD-7 

T02 
M 5.2-5.3 - - - - 5.2-5.4 

amax 0.30 - - - - 0.23-0.26 

TP05 
M 5.5-5.8 - - - - 5.7-5.9 

amax 0.27-0.28 - - - - 0.21-0.24 

A08' 
M 4.4-4.9 - - - - 4.3-4.7 

amax 0.31-0.32 - - - - 0.24-0.28 

P11 
M 5.1 - - - - 5.0-5.1 

amax 0.30-0.31 - - - - 0.24-0.27 

SAM-1 

T02 
M 7.3-7.6 7.1-7.5 7.1-7.4 - - - 

amax 0.17-0.19 0.14-0.16 0.13-0.16 - - - 

TP05 
M 6.9-7.1 6.7-6.9 6.7-6.9 - - - 

amax 0.20 0.17-0.18 0.16-0.18 - - - 

A08' 
M 6.4-6.7 6.2-6.5 6.2-6.5 - - - 

amax 0.22-0.24 0.18-0.22 0.18-0.21 - - - 

P11 
M 7.3-7.4 7.0-7.2 7.0-7.2 - - - 

amax 0.18-0.19 0.16-0.17 0.15-0.17 - - - 

SAM-2 

T02 
M 7.1-7.4 6.9-7.2 6.9-7.2 - - - 

amax 0.15-0.16 0.13-0.14 0.13-0.14 - - - 

TP05 
M 6.8-7.0 6.6-6.8 6.6-6.8 - - - 

amax 0.17-0.18 0.15-0.16 0.14-0.16 - - - 

A08' 
M 6.3-6.6 6.1-6.4 6.0-6.4 - - - 

amax 0.19-0.21 0.16-0.18 0.16-0.19 - - - 

P11 
M 7.0-7.1 6.8-7.0 6.8-7.0 - - - 

amax 0.17 0.14-0.15 0.13-0.15 - - - 

SAM-3 

T02 
M 7.2-7.4 7.2-7.5 7.2-7.5 - - - 

amax 0.24-0.25 0.16-0.21 0.15-0.21 - - - 

TP05 
M 7.1-7.3 6.9-7.1 6.9-7.1 - - - 

amax 0.24-0.25 0.18-0.22 0.18-0.22 - - - 

A08' 
M 6.7-7.0 6.3-6.8 6.3-6.8 - - - 

amax 0.26-0.29 0.20-0.26 0.20-0.26 - - - 

P11 
M 7.2-7.3 7.2-7.3 7.1-7.3 - - - 

amax 0.24-0.25 0.17-0.21 0.16-0.21 - - - 

GAP-1 

T02 M 7.0 - - 6.7-7.2 6.6-7.2 - 

 amax 0.16 - - 0.12-0.14 0.12-0.14 - 

TP05 M 6.7-6.8 - - 6.4-6.6 6.3-6.6 - 

 amax 0.17-0.18 - - 0.14-0.15 0.14-0.15 - 

A08' M 6.1-6.5 - - 5.9-6.2 5.9-6.2 - 

 amax 0.19-0.20 - - 0.15-0.17 0.15-0.17 - 

P11 M 6.9-7.0 - - 6.6-6.9 6.6-6.9 - 
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Test 

Location 
Model 

Earthquake 

Magnitudes 

No Age 

Correction  

Age Corrected (Y.B.P) 

Charleston Source 

Sawmill 

Branch 

fault 

546±17 1021±30 3548±66 5038±166 3500 

 amax 0.16 - - 0.13-0.14 0.13-0.14 - 

GAP-2 

T02 M 6.7-7.0 - - 6.4-6.9 6.3-6.9 - 

 amax 0.18-0.20 - - 0.16-0.21 0.16-0.21 - 

TP05 M 6.4-6.6 - - 6.2-6.6 6.2-6.6 - 

 amax 0.21 - - 0.17-0.23 0.17-0.23 - 

A08' M 6.0-6.2 - - 5.9-6.2 5.8-6.2 - 

 amax 0.23-0.24 - - 0.18-0.25 0.18-0.25 - 

P11 M 6.6-6.7 - - 6.3-6.6 6.3-6.6 - 

 amax 0.20 - - 0.16-0.22 0.16-0.22 - 

GAP-3 

T02 M 6.8-7.1 - - 6.4-7.0 6.4-7.0 - 

 amax 0.11-0.13 - - 0.10-0.11 0.10-0.11 - 

TP05 M 6.4-6.6 - - 6.1-6.5 6.1-6.5 - 

 amax 0.13-0.14 - - 0.11-0.13 0.11-0.13 - 

A08' M 5.9-6.2 - - 5.7-6.1 5.7-6.1 - 

 amax 0.14-0.15 - - 0.12-0.15 0.12-0.15 - 

P11 M 6.7-6.8 - - 6.3-6.7 6.3-6.7 - 

 amax 0.13 - - 0.11-0.12 0.11-0.12 - 

 

Table 7.9 presents the range of minimum earthquake magnitude and peak ground 

acceleration at each test location for each episode, for all attenuation models combined.  

The difference in earthquake magnitude and peak ground acceleration between different 

test locations at Hollywood, Fort Dorchester, Sampit, and Gapway sites are up to 0.4, 0.4, 

0.3, and 0.3 units and 0.07g, 0.16g, 0.07g, and 0.1g, respectively. The results from each 

test location at each site are combined for the age of earthquake and the range of M and 

amax are shown in Table 7.10. 
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Table 7.9 Range of minimum amax-M at each test location. 

 

Test 

Location 

Earthquake 

Magnitudes 

No Age 

Correction 

Age Corrected (Y.B.P) 

Charleston Source 
Sawmill 

Branch fault 

546±17 1021±30 3548±66 5038±166 3500 

HWD-4 
M 5.8-6.1 5.7-6.1 5.6-6.0 5.6-6.0 5.5-6.0 - 

amax 0.34-0.37 0.29-0.34 0.29-0.33 0.28-0.34 0.28-0.34 - 

HWD-5 
M 5.8-6.2 5.6-6.0 5.6-5.9 5.5-5.9 5.5-5.9 - 

amax 0.31-0.34 0.26-0.30 0.26-0.29 0.25-0.28 0.25-0.27 - 

HWD-6 
M 6.1-6.5 5.9-6.3 5.9-6.3 5.8-6.2 5.8-6.2 - 

amax 0.35-0.39 0.30-0.34 0.29-0.33 0.29-0.32 0.28-0.31 - 

FD-1 
M 5.4-6.2 - - - - 5.1-5.9 

amax 0.38-0.46 - - - - 0.34-0.39 

FD-2 
M 5.2-6.1 - - - - 5.2-6.3 

amax 0.28-0.35 - - - - 0.27-0.36 

FD-3 
M 5.1-5.9 - - - - 5.1-6.3 

amax 0.24-0.30 - - - - 0.19-0.26 

FD-7 
M 5.1-5.8 - - - - 5-5.9 

amax 0.27-0.31 - - - - 0.21-0.27 

SAM-1 
M 6.9-7.6 6.7-7.5 6.7-7.4 - - - 

amax 0.17-0.20 0.14-0.18 0.13-0.18 - - - 

SAM-2 
M 6.8-7.4 6.6-7.2 6.6-7.2 - - - 

amax 0.15-0.18 0.13-0.16 0.13-0.16 - - - 

SAM-3 
M 7.1-7.4 6.9-7.5 6.9-7.5 - - - 

amax 0.24-0.25 0.16-0.22 0.15-0.22 - - - 

GAP-1 
M 6.7-7.0 - - 6.4-7.2 6.3-7.2 - 

amax 0.16-0.18 - - 0.12-0.15 0.12-0.15 - 

GAP-2 
M 6.4-7.0 - - 6.2-6.9 6.2-6.9 - 

amax 0.18-0.21 - - 0.16-0.23 0.16-0.23 - 

GAP-3 
M 6.4-7.1 - - 6.1-7.0 6.1-7.0 - 

amax 0.11-0.14 - - 0.10-0.13 0.10-0.13 - 

 

The results at the Hollywood site are compared with those obtained from earlier 

studies of Martin and Clough 1994 that did not consider the effect of the age of the soil 

deposit and Gheibi and Gassman 2015 that used pre-earthquake tip resistance data found 

using Mesri et al. 1990 and Kulhawy and Mayne 1990 time dependent approaches. Also 

shown are the results from a re-analysis of the data from Gheibi and Gassman 2015. M 

and amax were re-calculated using the post-earthquake values of tip resistance and the 

Kulhawy and Mayne 1990 study to account for aging. This is consistent with the 

approaches to account for aging and back-calculate amax used in Section 7.3. The primary 



www.manaraa.com

143 

difference between the study herein and the re-analysis of Gheibi and Gassman 2015 is 

the method to find M: GMPE’s were used in this study; whereas, an approach based on 

the Energy Intensity equation (Pond and Martin 1997) was used previously.  

   

Table 7.10 Summary of estimated minimum peak ground acceleration and earthquake 

magnitudes at the Hollywood, Fort Dorchester, Sampit, and Gapway sites. 

 

Site Study 
Earthquake 

Magnitudes 

No Age 

Correction 

Age Corrected (Y.B.P) 

Charleston Source 

Sawmill 

Branch 

fault 

546±17 1021±30 3548±66 5038±166 3500 

HWD 

This Study 
M 5.8-6.5 5.6-6.3 5.6-6.3 5.5-6.2 5.5-6.2 - 

amax 0.31-0.39 0.26-0.34 0.26-0.33 0.25-0.34 0.25-0.34 - 

Gheibi and 

Gassman (2015) 

M 7-7.2 5.7-6.7 5.5-6.5 5.3-6.5 5.2-6.5 - 

amax 0.23-0.35 0.17-0.3 0.17-0.30 0.17-0.29 0.16-0.29 - 

Re-analysis of  

Gheibi and 

Gassman (2015) 

M 7-7.2 6.7-6.9 6.6-6.9 6.6-6.8 6.6-6.8 - 

amax 0.23-0.3 0.20-0.26 0.20-0.26 0.20-0.26 0.19-0.25 - 

Martin and 

Clough (1994) 

M 7.5 - - - - - 

amax 0.25 - - - - - 

FD 

This Study 
M 5.1-6.2 - - - - 5.0-6.3 

amax 0.24-0.46 - - - - 0.19-0.39 

Chapter 5 
M - - - - - 5.1-6.2 

amax - - - - - 0.19-0.40 

SAM 

This Study 
M 6.8-7.6 6.6-7.5 6.6-7.5 - - - 

amax 0.15-0.25 0.13-0.22 0.13-0.22 - - - 

Leon et al.  

2005 
M - 6.2-7.0 6.2-6.8 - - - 

Gheibi and 

Gassman 2014 
amax - - 0.10-0.18 - - - 

GAP 

This Study 
M 6.4-7.1 - - 6.1-7.2 6.1-7.2 - 

amax 0.11-0.21 - - 0.10-0.23 0.10-0.23 - 

Leon et al.  

2005 
M - - - 5.6-6.4 5.5-6.2 - 

Gheibi and 

Gassman 2014 
amax - - - 0.10-0.14 0.11-0.18 - 

 

At Fort Dorchester, results found using GMPEs are similar to the results found 

using the energy stress and cyclic stress methods presented in Chapter 5. Peak ground 

acceleration and earthquake magnitudes found using GMPEs at Sampit and Gapway sites 
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are also compared to those found by earlier studies of Leon et al. 2005 for the earthquake 

magnitude and Gheibi and Gassman 2014 for the peak ground acceleration values. 

Minimum earthquake magnitudes found using GMPEs at Sampit and Gapway sites are up 

to 0.7 and 1 units more than the previous findings using the energy stress equation by 

Leon et al. 2005.   

Talwani and Schaeffer 2001 found evidence of prehistoric earthquakes (sand 

blows) associated with the Charleston Source, at more than one site. In particular, the 

earthquakes that occurred about 546±17 and 1021±30 years B.P. have caused sand blows 

at both Hollywood and Sampit sites. Similarly, prehistoric earthquakes that occurred 

about 3548±66 and 5038±166 years B.P. caused sand blows at both Hollywood and 

Gapway sites. Regardless of the site-specific geotechnical in-situ data, the final 

estimation of minimum amax and M for each earthquake should be sufficient to liquefy the 

soil and cause sandblows at both sites.  

Figure 7.11 is summary of the findings that indicate the range of minimum amax-M 

for prehistoric earthquakes in the SCCP. Results in Figure 7.11 were found using in-situ 

geotechnical data and four Ground Motion Prediction Equations (T02, TP05, A08', P11) 

and indicate range of minimum amax-M for each prehistoric earthquake associated with 

two sources of Charleston and Sawmill Branch fault. Results for each earthquake were 

found based on the required minimum amax and M found at both sites that have evidence 

of sand blows associated with that earthquake. 

 As an example, using the soil profile and geotechnical in-situ data (i.e. cone 

penetration test) at the Hollywood site, the minimum earthquake magnitude of the 

earthquake that occurred about 546±17 years B.P. was found to range from 5.6 to 6.3. On 
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the other hand, using the geotechnical in-situ data at the Sampit site, the range of 

minimum earthquake magnitude for the same prehistoric earthquake was found to range 

from 6.6 to 7.5. The maximum value of the estimated lower bound (max (5.6,6.6)) and 

estimated upper bound (max (6.3,7.5)) were selected as the final estimation. Finally, the 

minimum earthquake magnitude of the prehistoric earthquake that occurred about 546±17 

years B.P. and has liquefied the soil at both sites, was found to range from 6.6 to 7.5. The 

same procedure was conducted to find the minimum earthquake magnitude and peak 

ground acceleration values for the other prehistoric earthquakes.   

As shown, for the Sawmill Branch fault, the minimum earthquake magnitude and 

peak ground accelerations are estimated to range from 5 to 6.3 and 0.19 to 0.39g. For the 

Charleston Source, the minimum earthquake magnitudes for earthquakes that occurred 

about 546±17 and 1021±30 years B.P. range from 6.6 to 7.5 and for the earthquakes that 

occurred about 3548±66 and 5038±166 years B.P. range from 6.1 to 7.2.    

  

 
 

Figure 7.11 Minimum earthquake magnitudes for prehistoric earthquakes in SCCP 

found using GMPEs. 
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7.6 CONCLUSION 

The minimum earthquake magnitudes and peak ground accelerations associated 

with prehistoric earthquakes at the Hollywood, Fort Dorchester, Sampit and Gapway sites 

in the South Carolina Coastal Plain were back analysed using in-situ geotechnical data, 

four Ground Motion Prediction Equations (T02, TP05, A08', P11) and two time-

dependent procedures (Kulhawy and Mayne 1990 and Hayati and Andrus 2009) to 

correct for the age of the earthquake. It was shown that results obtained using Kulhawy 

and Mayne 1990 and Hayati and Andrus 2009 time-dependent approaches are in a 

general agreement.  

Results indicated that at the Hollywood site, the magnitudes found using GMPE’s 

are an order of magnitude less than those found using the Energy Intensity equation. At 

the Hollywood site, when the age of the earthquake was not considered, the minimum 

magnitude ranged from 5.8 to 6.5 and the corresponding peak ground acceleration ranged 

from 0.31 to 0.39g.  When the age of the earthquake was considered, the earthquake 

magnitude was found to be 0.2 to 0.3 units lower depending on earthquake age and the 

GMPE model. For the most recent prehistoric earthquake with the age of 546±17, the 

magnitude ranged from 5.6 to 6.3 with corresponding acceleration ranging from 0.26 to 

0.34g.  

At the Fort Dorchester site, earthquake magnitudes found using both methods are 

in a good agreement. The earthquake at Fort Dorchester is estimated to have occurred 

3,500 years B.P. or earlier and the minimum earthquake magnitude is estimated to range 

from 5 to 6.3. Results at the Sampit and Gapway sites indicate that the minimum 

earthquake magnitudes are estimated to range from 6.6 to 7.5 and 6.1 to 7.2, respectively. 
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Earthquake magnitudes for these two sites are estimated to be the same for earthquakes 

that occurred 546±17 and 1021±30 years B.P.  

Minimum earthquake magnitudes for the prehistoric earthquakes in the SCCP 

associated with the Charleston Source range from 6.6 to 7.5 for earthquakes that occurred 

546±17 and 1021±30 years B.P. and range from 6.1 to 7.2 for the earthquakes that 

occurred 3548±66 and 5038±166 years B.P. Earthquakes associated with Sawmill Branch 

fault are estimated to occur at least 3500 years ago with the minimum earthquake 

magnitude range from 5 to 6.3.  
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CHAPTER 8 

 

CONCLUSION 
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8.1 Summary and Conclusions 

The primary objective of the dissertation was to determine the proper combination of 

minimum earthquake magnitude and peak ground acceleration (amax-M) required to 

initiate liquefaction for prehistoric earthquakes in the Charleston area. Many researchers 

have shown that aging leads to an increase in liquefaction resistance through mechanical 

mechanisms such as particle rearrangement and interlocking as well as chemical 

mechanisms such as cementation. To develop a regional view of amax-M for prehistoric 

earthquakes in the SCCP, it was proposed to use three different approaches: Mesri et al. 

1990, Kulhawy and Mayne 1990 and Hayati and Andrus 2009, to account for soil age in 

the back-calculation of the prehistoric minimum earthquake magnitude and peak ground 

acceleration at four sites in the SCCP: Sampit and Gapway (Chapter 3), Hollywood 

(Chapter 4), and Fort Dorchester (Chapter 5). The Hayati and Andrus 2009 method is the 

newest of the three methods and accounts for the effect of soil age on the cyclic 

resistance ratio (see Section 2.5 for a summary of the method). Studies were needed to 

compare the results from this method to those already found at Sampit and Gapway by 

Leon et al. 2005 using the Mesri et al. 1990 and Kulhawy and Mayne 1990 methods, and 

also to obtain results for the Hollywood and Fort Dorchester sites; sites that had not yet 

been studied with regard to aging.   

 Peak ground acceleration of the prehistoric earthquakes at the Sampit and 

Gapway sites were reassessed in Chapter 3 using newer liquefaction analysis method of 

Idriss and Boulanger 2008 and compared with previous findings from Hu et al. 2002b 

and Leon et al. 2005. Results indicated that the newer method of liquefaction analysis 
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resulted in accelerations that were about 50% less than those found by Leon et al. 2005 

for M=5 and about 23% less for M=7.5.  

Minimum earthquake magnitudes associated with prehistoric earthquakes that 

occurred about 546±30, 1021±30, 3548±66, and 5038±166 years B.P. at the Hollywood 

site were back-calculated in Chapter 4 using two approaches (Mesri et al. 1990 and 

Kulhawy and Mayne 1990) to consider the effect of soil aging and the updated method of 

liquefaction analysis used in Chapter 3. The results were compared with earlier studies by 

other researchers (Obermeier et al. 1987, Talwani and Cox 1985, Weems et al. 1986, and 

Martin and Clough 1994). It was shown that minimum earthquake magnitudes associated 

with the most recent episode (546±17 years B.P.) at the Hollywood site ranged from 5.7 

to 6.7. The corresponding accelerations ranged from 0.16 to 0.30g.   

In Chapter 5, the most recent aging approach of Hayati and Andrus 2009 was 

used in addition to the previously used methods that consider the effect of soil aging 

(Mesri et al. 1990 and Kulhawy and Mayne 1990) to back-calculate the minimum 

earthquake magnitudes at the Fort Dorchester site; a site with a recently discovered sand 

blow (Talwani et al. 2011). The minimum earthquake magnitude and peak ground 

accelerations obtained using the Mesri et al. 1990 method to account for age were not in 

agreement with the approaches of Kulhawy and Mayne 1990 and Hayati and Andrus 

2009 at the Fort Dorchester site. Given the agreement with the results found using the 

Kulhawy and Mayne 1990 and the Hayati and Andrus 2009 relations for age, and also 

considering the study by Wells and Coppersmith 1994, the minimum magnitude was 

found to be 5.6 and the corresponding peak ground acceleration ranged from 0.21 to 

0.36g.   
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In Chapter 7, minimum earthquake magnitudes and peak ground accelerations at 

the Hollywood, Fort Dorchester, Sampit, and Gapway sites were estimated by combining 

the cyclic stress method with Ground Motion Prediction Equations (GMPEs) to find a 

regional assessment of amax-M in the SCCP. GMPEs define peak ground acceleration as a 

function of earthquake magnitude and site-to-source distance and can lead to a more 

robust risk assessment. As there are many combinations of amax-M found from the cyclic 

stress method sufficient to induce liquefaction, the results of both methods are combined 

by intersection of the results to provide a reasonable combination of amax-M. Four 

regionally proper GMPEs (T02, TP05, A08’, and P11) were selected from the U.S. 

Geological Survey (USGS) updated hazard map report (Petersen et al. 2014) and used in 

combination with cyclic stress method and the methods of Kulhawy and Mayne 1990 and 

Hayati and Andrus 2009 to account for the effect of soil aging. 

Results at the Hollywood, Fort Dorchester, Sampit and Gapway sites were 

compared with previous studies that back-calculated the minimum accelerations and 

magnitudes at these sites based on the cyclic stress, energy intensity and energy stress 

methods. At the Hollywood site, the minimum magnitudes found using GMPE’s are an 

order of magnitude less than those found by Gheibi and Gassman 2015 using the energy 

intensity equation. At the Fort Dorchester site, the minimum earthquake magnitudes 

found using GMPE’s are similar to those found using the energy stress method in chapter 

5. Minimum earthquake magnitudes found using GMPEs are up to 0.7 units more at 

Sampit and 1 unit more at Gapway than previously findings by Leon et al. 2005 using the 

energy stress method.   
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Regional assessment of amax-M for the Charleston area indicated that when the 

source of the earthquake is associated with the Charleston Source, the minimum 

earthquake magnitude and peak ground accelerations for the earthquakes that occurred 

about 546±17 and 1021±30 years B.P., were estimated to range from 6.6 to 7.5 and 0.13 

to 0.34g, respectively. Earthquakes that occurred about 3548±66 and 5038±166 years 

B.P. were estimated to have minimum earthquake magnitude range from 6.1 to 7.2 and 

minimum peak ground acceleration of about 0.10 to 0.34g. For the earthquakes 

associated with the Sawmill Branch Fault that occurred about 3500 years ago or earlier, 

the minimum earthquake magnitudes were estimated to range from 5 to 6.3 and the 

corresponding peak ground acceleration ranged from 0.19 to 0.39 g.  

8.2 Future Research 

To further advance our understanding of the seismic hazard in the SCCP, future areas of 

research include: 

1. Study aging mechanisms. The soil mineralogy and grain characteristics of soil 

deposits in the SCCP need to be studied to better understand the aging mechanism at each 

site. An initial study by Hasek and Gassman 2016 examined the mesoscopic and 

microscopic characteristics of liquefiable soils at the Hollywood, Sampit, and Four Hole 

Swamp sites and found no evidence of chemical aging in form of cementation between 

soil particles. Given the significance of paleoliquefaction study, further studies are 

needed to better understand the aging mechanism and find a site specific aging factor at 

each site. This will reduce uncertainties associated with aging approaches and will lead to 

a better estimation of earthquake magnitude and peak ground acceleration in the SCCP.  
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2.  Utilize shear wave velocity. Shear wave velocity data has been shown to 

further our understanding of the liquefaction potential assessment since both shear wave 

velocity and liquefaction resistance parameters are influenced by similar factors (Andrus 

and Stokoe 2000; Andrus et al. 2006). CPT data were used in this study and it is 

suggested to utilize the shear wave velocity data at Hollywood, Fort Dorchester, Sampit, 

and Gapway sites that have been collected by Heidari and Andrus 2012, Hossain et al. 

2013 and Hayati et al. 2008 and back-calculate minimum earthquake magnitudes and 

peak ground accelerations of the prehistoric earthquakes in the Charleston region. Results 

can be compared with the findings from this study to find a more robust assessment of 

amax-M for the regional prehistoric earthquakes in the SCCP.     

3. Increase the study area. Obtaining geotechnical data from more sites where 

sand blows have been discovered in the SCCP will extend the region of study. It is also 

suggested to find minimum amax-M using regionally proper GMPEs for the prehistoric 

earthquakes at two sites where the CPT data have already been obtained; the Four Hole 

Swamp and Ten Mile Hill sites. 

4.  Study the site-to-source distance. GMPEs estimate peak ground acceleration as 

a function of earthquake magnitude and site-to-source distance. Site-to-source distance is 

one of the uncertainties associated with paleoseismic analysis since the exact locations of 

earthquakes are not known. It is suggested to use GMPEs to find minimum amax-M for 

different site-to-source distances at each site. It is expected to find similar amax-M for 

different sites for the same earthquake with different site-to-source distances. Results will 

be used to find the nearest estimation of site-to-source distance for each site. 
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